Stabilizer configuration interaction: Finding molecular subspaces with error detection properties

Type: Preprint

Publication Date: 2024-10-28

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2410.21125

Abstract

In this work, we explore a new approach to designing both algorithms and error detection codes for preparing approximate ground states of molecules. We propose a classical algorithm to find the optimal stabilizer state by using excitations of the Hartree-Fock state, followed by constructing quantum error-detection codes based on this stabilizer state using codeword-stabilized codes. Through various numerical experiments, we confirm that our method finds the best stabilizer approximations to the true ground states of molecules up to 36 qubits in size. Additionally, we construct generalized stabilizer states that offer a better approximation to the true ground states. Furthermore, for a simple noise model, we demonstrate that both the stabilizer and (some) generalized stabilizer states can be prepared with higher fidelity using the error-detection codes we construct. Our work represents a promising step toward designing algorithms for early fault-tolerant quantum computation.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ On the Geometry of Stabilizer States 2017 HĂ©ctor J. GarcĂ­a
Igor L. Markov
Andrew W. Cross
+ PDF Chat Stabilizer ground states: theory, algorithms and applications 2024 Jiace Sun
Lixue Cheng
Shixin Zhang
+ Fault Tolerant Non-Clifford State Preparation for Arbitrary Rotations 2023 Hyeongrak Choi
Frederic T. Chong
Dirk Englund
Yongshan Ding
+ PDF Chat On the geometry of stabilizer states 2014 HĂ©ctor J. GarcĂ­a
Igor L. Markov
Andrew W. Cross
+ Fault-Tolerant Computing with Single Qudit Encoding 2023 Matteo Mezzadri
Alessandro Chiesa
Luca Lepori
Stefano Carretta
+ On the geometry of stabilizer states 2014 HĂ©ctor J. GarcĂ­a
Igor L. Markov
Andrew W. Cross
+ PDF Chat Families of $d=2$ 2D subsystem stabilizer codes for universal Hamiltonian quantum computation with two-body interactions 2024 Phattharaporn Singkanipa
Zihan Xia
Daniel A. Lidar
+ PDF Chat Doped stabilizer states in many-body physics and where to find them 2024 Andi Gu
Salvatore F. E. Oliviero
Lorenzo Leone
+ PDF Chat Flag Fault-Tolerant Error Correction for any Stabilizer Code 2020 Rui Chao
Ben W. Reichardt
+ Concatenating quantum error correcting codes with decoherence-free subspaces, and vice versa 2023 Nihar Ranjan Dash
Sanjoy Dutta
R. Srikanth
Subhashish Banerjee
+ Efficient Inner-product Algorithm for Stabilizer States 2012 HĂ©ctor J. GarcĂ­a
Igor L. Markov
Andrew W. Cross
+ Quantum Error Correction: Noise-adapted Techniques and Applications 2022 Akshaya Jayashankar
Prabha Mandayam
+ Accurate and Honest Approximation of Correlated Qubit Noise 2023 F. Setiawan
A. V. Gramolin
Elisha S. Matekole
Hari Krovi
Jacob M. Taylor
+ An Efficient Algorithmic Way to Construct Boltzmann Machine Representations for Arbitrary Stabilizer Code 2018 Yuanhang Zhang
Zhian Jia
Yu-Chun Wu
Guang‐Can Guo
+ PDF Chat Stabilizer Slicing: Coherent Error Cancellations in Low-Density Parity-Check Stabilizer Codes 2018 Dripto M. Debroy
Muyuan Li
Michael Newman
Kenneth R. Brown
+ PDF Chat Fundamental thresholds for computational and erasure errors via the coherent information 2024 Luis ColmenĂĄrez
Seyong Kim
Markus MĂŒller
+ PDF Chat Decoherence-free subspaces for multiple-qubit errors. II. Universal, fault-tolerant quantum computation 2001 Daniel A. Lidar
Dave Bacon
Julia Kempe
K. Birgitta Whaley
+ PDF Chat Quantum Error Correction 2020 Todd A. Brun
+ Quantum variational learning for quantum error-correcting codes 2022 Chenfeng Cao
C. Zhang
Zipeng Wu
Markus Grassl
Bei Zeng
+ Quantum error correction in the NISQ regime for sequential quantum computing 2021 Arvid Rolander
Adam Kinos
Andreas Walther

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors