Stochastic Flow Matching for Resolving Small-Scale Physics

Type: Preprint

Publication Date: 2024-10-17

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2410.19814

View Chat PDF

Abstract

Conditioning diffusion and flow models have proven effective for super-resolving small-scale details in natural images.However, in physical sciences such as weather, super-resolving small-scale details poses significant challenges due to: (i) misalignment between input and output distributions (i.e., solutions to distinct partial differential equations (PDEs) follow different trajectories), (ii) multi-scale dynamics, deterministic dynamics at large scales vs. stochastic at small scales, and (iii) limited data, increasing the risk of overfitting. To address these challenges, we propose encoding the inputs to a latent base distribution that is closer to the target distribution, followed by flow matching to generate small-scale physics. The encoder captures the deterministic components, while flow matching adds stochastic small-scale details. To account for uncertainty in the deterministic part, we inject noise into the encoder output using an adaptive noise scaling mechanism, which is dynamically adjusted based on maximum-likelihood estimates of the encoder predictions. We conduct extensive experiments on both the real-world CWA weather dataset and the PDE-based Kolmogorov dataset, with the CWA task involving super-resolving the weather variables for the region of Taiwan from 25 km to 2 km scales. Our results show that the proposed stochastic flow matching (SFM) framework significantly outperforms existing methods such as conditional diffusion and flows.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Flow Matching for Generative Modeling 2022 Yaron Lipman
Ricky T. Q. Chen
Heli Ben-Hamu
Maximilian Nickel
Matt Le
+ PDF Chat Flow Map Matching 2024 Nicholas M. Boffi
Michael S. Albergo
Eric Vanden‐Eijnden
+ Spectrally Decomposed Diffusion Models for Generative Turbulence Recovery 2023 Mohammed Sardar
Alex Skillen
Małgorzata J. Zimoń
Samuel Draycott
Alistair Revell
+ PDF Chat Reconstructing High-resolution Turbulent Flows Using Physics-Guided Neural Networks 2021 Shengyu Chen
Shervin Sammak
Peyman Givi
Joseph P. Yurko
Xiaowei Jia
+ Reconstructing High-resolution Turbulent Flows Using Physics-Guided Neural Networks 2021 Shengyu Chen
Shervin Sammak
Peyman Givi
Joseph P. Yurko
Xiaowei Jia
+ Towards Multi-spatiotemporal-scale Generalized PDE Modeling 2022 Jayesh K. Gupta
J. Brandstetter
+ Probabilistic Precipitation Downscaling with Optical Flow-Guided Diffusion 2023 Prakhar Srivastava
Ruihan Yang
Gavin Kerrigan
Gideon Dresdner
Jeremy McGibbon
Christopher S. Bretherton
Stephan Mandt
+ MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework 2020 Chiyu Max Jiang
Soheil Esmaeilzadeh
Kamyar Azizzadenesheli
Karthik Kashinath
Mustafa Mustafa
Hamdi A. Tchelepi
Philip Marcus
Prabhat
Anima Anandkumar
+ MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework 2020 Chiyu Max Jiang
Soheil Esmaeilzadeh
Kamyar Azizzadenesheli
Karthik Kashinath
Mustafa Mustafa
Hamdi A. Tchelepi
Philip Marcus
Prabhat
Anima Anandkumar
+ PDF Chat MESHFREEFLOWNET: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework 2020 Chiyu Jiang
Soheil Esmaeilzadeh
Kamyar Azizzadenesheli
Karthik Kashinath
Mustafa Mustafa
Hamdi A. Tchelepi
Philip Marcus
Mr Prabhat
Anima Anandkumar
+ PDF Chat Wavelet Diffusion Neural Operator 2024 Peiyan Hu
Rui Wang
Xiang Zheng
Tao Zhang
Haodong Feng
Ruiqi Feng
Wei Long
Yue Wang
Zhi-Ming Ma
Tailin Wu
+ Turbulence Enrichment using Physics-informed Generative Adversarial Networks 2020 Akshay Subramaniam
Man Long Wong
Raunak Borker
Sravya Nimmagadda
Sanjiva K. Lele
+ SuperBench: A Super-Resolution Benchmark Dataset for Scientific Machine Learning 2023 Pu Ren
N. Benjamin Erichson
Shashank Subramanian
Omer San
Zarija Lukić
Michael W. Mahoney
+ PDF Chat CoNFiLD: Conditional Neural Field Latent Diffusion Model Generating Spatiotemporal Turbulence 2024 Pan Du
Meet Hemant Parikh
Xiantao Fan
Xin-Yang Liu
Jianxun Wang
+ PDF Chat Enhancing Weather Predictions: Super-Resolution via Deep Diffusion Models 2024 Jan Martinů
Petr Šimánek
+ Turbulence Enrichment using Generative Adversarial Networks 2020 Akshay Subramaniam
Man Long Wong
Raunak Borker
Sravya Nimmagadda
Sanjiva K. Lele
+ Residual Diffusion Modeling for Km-scale Atmospheric Downscaling 2023 Morteza Mardani
Noah Brenowitz
Yair Cohen
Jaideep Pathak
Chieh‐Yu Chen
Cheng-Chin Liu
Arash Vahdat
Karthik Kashinath
Jan Kautz
Mike Pritchard
+ PDF Chat Generative AI for fast and accurate Statistical Computation of Fluids 2024 Roberto Molinaro
Samuel Lanthaler
Bogdan Raonić
Tobias Rohner
Victor Armegioiu
Zhong Wan
Fei Sha
Siddhartha Mishra
Leonardo Zepeda-Núñez
+ PDF Chat Spatio-Temporal Fluid Dynamics Modeling via Physical-Awareness and Parameter Diffusion Guidance 2024 Hao Wu
Fan Xu
Yifan Duan
Ziwei Niu
Weiyan Wang
Gaofeng Lu
Kun Wang
Yuxuan Liang
Yang Wang
+ PDF Chat tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow 2018 You Xie
Erik Franz
Mengyu Chu
Nils Thuerey

Cited by (0)

Action Title Year Authors

Citing (0)

Action Title Year Authors