Gaussian unitary ensembles with jump discontinuities, PDEs, and the coupled Painlevé IV system

Type: Other

Publication Date: 2024-01-01

Citations: 0

DOI: https://doi.org/10.1090/conm/807/16165

Abstract

We study the Hankel determinant generated by the Gaussian weight with jump discontinuities at <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t 1"> <mml:semantics> <mml:msub> <mml:mi>t</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding="application/x-tex">t_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, …, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t Subscript m"> <mml:semantics> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>m</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">t_m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. By making use of a pair of ladder operators satisfied by the associated monic orthogonal polynomials and three supplementary conditions, we show that the logarithmic derivative of the Hankel determinant satisfies a second-order partial differential equation which is reduced to the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma"> <mml:semantics> <mml:mi>σ</mml:mi> <mml:annotation encoding="application/x-tex">\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-form of a Painlevé IV equation when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m equals 1"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">m=1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Moreover, under the assumption that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t Subscript k Baseline minus t 1"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>t</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">t_k-t_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is fixed for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k equals 2"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">k=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, …, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding="application/x-tex">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, by considering the Riemann-Hilbert problem for the orthogonal polynomials, we construct direct relationships between the auxiliary quantities introduced in the ladder operators and solutions of a coupled Painlevé IV system.

Locations

  • Contemporary mathematics - American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Gaussian Unitary Ensembles with Jump Discontinuities, PDEs and the Coupled Painlevé IV System 2023 Yang Chen
Shulin Lyu
+ Gaussian unitary ensemble with two jump discontinuities, PDEs and the coupled Painlevé II and IV systems 2020 Shulin Lyu
Yang Chen
+ Gaussian unitary ensembles with two jump discontinuities, PDEs, and the coupled Painlevé II and IV systems 2020 Shulin Lyu
Yang Chen
+ PDF Chat Gaussian unitary ensemble with jump discontinuities and the coupled Painlevé II and IV systems 2021 Xiao‐Bo Wu
Shuai‐Xia Xu
+ Laguerre Unitary Ensembles with Jump Discontinuities, PDEs and the Coupled Painlevé V System 2022 Shulin Lyu
Yang Chen
Shuai‐Xia Xu
+ PDF Chat Laguerre unitary ensembles with jump discontinuities, PDEs and the coupled Painlevé V system 2023 Shulin Lyu
Yang Chen
Shuai‐Xia Xu
+ Hankel Determinants for a Gaussian weight with Fisher-Hartwig Singularities and Generalized Painlevé IV Equation 2023 Xinyu Mu
Shulin Lyu
+ PDF Chat Painlevé transcendents and the Hankel determinants generated by a discontinuous Gaussian weight 2018 Chao Min
Yang Chen
+ Continuous and Discrete Painlev\'{e} IV from a Discontinuous Linear Statistic in the Gaussian Unitary Ensemble 2018 Chao Min
Yang Chen
+ Painlevé III′ and the Hankel determinant generated by a singularly perturbed Gaussian weight 2018 Chao Min
Shulin Lyu
Yang Chen
+ PDF Chat Hankel determinants for a Gaussian weight with Fisher–Hartwig singularities and generalized Painlevé IV equation 2023 Xinyu Mu
Shulin Lyu
+ PDF Chat Gap Probability Distribution of Gaussian Unitary Ensembles and Painlev\'{e} V Equation 2024 Shengjie Zhang
Shulin Lyu
+ A degenerate Gaussian weight connected with Painlevé equations and Heun equations 2020 Pengju Han
Yang Chen
+ PDF Chat Perturbed Hankel determinant, correlation functions and Painlevé equations 2016 Min Chen
Yang Chen
Engui Fan
+ PDF Chat Painlevé IV, σ-form, and the deformed Hermite unitary ensembles 2021 Mengkun Zhu
Dan Wang
Yang Chen
+ PDF Chat Hankel Determinant and Orthogonal Polynomials for a Gaussian Weight with a Discontinuity at the Edge 2016 Alexander Bogatskiy
Tom Claeys
A. R. Its
+ PDF Chat Asymptotics for Hankel Determinants Associated to a Hermite Weight with a Varying Discontinuity 2018 Christophe Charlier
Alfredo Deaño
+ PDF Chat Differential, difference, and asymptotic relations for Pollaczek–Jacobi type orthogonal polynomials and their Hankel determinants 2021 Chao Min
Yang Chen
+ Gaussian unitary ensemble with boundary spectrum singularity and $\sigma$-form of the Painlev\'{e} II equation 2017 Xiao‐Bo Wu
Shuai‐Xia Xu
Yu‐Qiu Zhao
+ Gaussian unitary ensemble with boundary spectrum singularity and $σ$-form of the Painlevé II equation 2017 Xiao‐Bo Wu
Shuai‐Xia Xu
Yu‐Qiu Zhao

Works That Cite This (0)

Action Title Year Authors