Polynomial similarity of pairs of matrices

Type: Preprint

Publication Date: 2024-08-08

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2408.04244

Abstract

Let $K$ be a field, $R=K[x, y]$ the polynomial ring and $\mathcal{M}(K)$ the set of all pairs of square matrices of the same size over $K.$ Pairs $P_1=(A_1,B_1)$ and $P_2=(A_2,B_2)$ from $\mathcal{M}(K)$ are called similar if $A_2=X^{-1}A_1X$ and $B_2=X^{-1}B_1X$ for some invertible matrix $X$ over $K$. Denote by $\mathcal{N}(K)$ the subset of $\mathcal{M}(K)$, consisting of all pairs of commuting nilpotent matrices. A pair $P$ will be called {\it polynomially equivalent} to a pair $\overline{P}=(\overline{A}, \overline{B})$ if $\overline{A}=f(A,B), \overline{B}=g(A ,B)$ for some polynomials $f, g\in K[x,y]$ satisfying the next conditions: $f(0,0)=0, g(0,0)=0$ and $ {\rm det} J(f, g)(0, 0)\not =0,$ where $J(f, g)$ is the Jacobi matrix of polynomials $f(x, y)$ and $g(x, y).$ Further, pairs of matrices $P(A,B)$ and $\widetilde{P}(\widetilde{A}, \widetilde{B})$ from $\mathcal{N}(K)$ will be called {\it polynomially similar} if there exists a pair $\overline{P}(\overline{A}, \overline{B})$ from $\mathcal{N}(K)$ such that $P$, $\overline{P}$ are polynomially equivalent and $\overline{P}$, $\widetilde{P}$ are similar. The main result of the paper: it is proved that the problem of classifying pairs of matrices up to polynomial similarity is wild, i.e. it contains the classical unsolvable problem of classifying pairs of matrices up to similarity.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Polynomial similarity of pairs of matrices 2024 Vitaliy M. Bondarenko
А. П. Петравчук
M. Styopochkina
+ Semi-scalar equivalence of polynomial matrices 2020 В. М. Прокіп
+ Pairs of matrices satisfying certain polynomial identities 1994 M. Antónia Düffner
G. N. de Oliveira
+ Possibilities for the number of invariant polynomials of the difference of two similarity classes 1996 Fernando C. Silva
Wasin So
+ Canonical forms for pairs of commuting nilpotent $4\times 4$ matrices under simultaneous similarity 2023 Jiuzhao Hua
+ Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals 2014 Ladzoryshyn Natalija
Petrychkovych Vasil
+ PDF Chat Pseudo-Similarity for Matrices Over a Field 1978 R. E. Hartwig
F. J. Hall
+ Similarity of involutory matrices over a local ring of characteristic 2k 1995 T. G. GAZARYAN
+ Simultaneous similarity of matrices 1983 Shmuel Friedland
+ Criterion for Similarity of Matrices of M_2(R) 2010 LI Dian-long
+ On simultaneous similarity of matrices and related questions 1999 J.A. Dias da Silva
T.J. Lafley
+ On Standard Forms of the Pairs of Matrices Over the Ring of Gaussian Integers with Respect to the (z,k)-Equivalence 2024 N. B. Ladzoryshyn
V. М. Petrychkovych
+ On standard forms of pairs of matrices over the ring of Gaussian integers with respect to (z,k)-equivalence 2021 N. B. Ladzoryshyn
V. М. Petrychkovych
+ On similarity invariants of matrix commutators and Jordan products 2005 Susana Furtado
Enide Andrade
Fernando C. Silva
+ PDF Chat Similarity of matrices over a commutative artinian local ring 1986 A. A. Nechaev
+ Similarity of nilpotent, integer matrices, or, four elementary categories 1982 Daniel Zelinsky
+ Similarity of matrices with integer spectrum over the ring of integers 2011 Sidorov Sergey Vladimirovich
+ Similarity of matrices with integer spectrum over the ring of integers 2011 С. В. Сидоров
+ Canonical forms for a class of pairs of commuting nilpotent matrices under simultaneous similarity 2023 Jiuzhao Hua
+ Pairs of matrices with quadratic minimal polynomials 1983 F Gaines

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors