Large Deviations Principle for Bures-Wasserstein Barycenters

Type: Preprint

Publication Date: 2024-09-17

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2409.11384

Abstract

We prove the large deviations principle for empirical Bures-Wasserstein barycenters of independent, identically-distributed samples of covariance matrices and covariance operators. As an application, we explore some consequences of our results for the phenomenon of dimension-free concentration of measure for Bures-Wasserstein barycenters. Our theory reveals a novel notion of exponential tilting in the Bures-Wasserstein space, which, in analogy with Cr\'amer's theorem in the Euclidean case, solves the relative entropy projection problem under a constraint on the barycenter. Notably, this method of proof is easy to adapt to other geometric settings of interest; with the same method, we obtain large deviations principles for empirical barycenters in Riemannian manifolds and the univariate Wasserstein space, and we obtain large deviations upper bounds for empirical barycenters in the general multivariate Wasserstein space. In fact, our results are the first known large deviations principles for Fr\'echet means in any non-linear metric space.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Statistical inference for Bures-Wasserstein barycenters 2019 Alexey Kroshnin
Vladimir Spokoiny
Alexandra Suvorikova
+ Statistical inference for Bures-Wasserstein barycenters 2019 Alexey Kroshnin
Vladimir Spokoiny
Alexandra Suvorikova
+ Statistical inference for Bures--Wasserstein barycenters 2020 Alexey Kroshnin
Vladimir Spokoiny
Alexandra Suvorikova
+ PDF Chat Statistical inference for Bures–Wasserstein barycenters 2021 Alexey Kroshnin
Vladimir Spokoiny
Alexandra Suvorikova
+ Wasserstein Barycenters over Riemannian manifolds 2014 Young‐Heon Kim
Brendan Pass
+ Concentration of empirical barycenters in metric spaces 2023 Victor-Emmanuel Brunel
Jordan Serres
+ Penalized Barycenters in the Wasserstein Space 2016 Jérémie Bigot
Elsa Cazelles
Nicolas Papadakis
+ Penalized Barycenters in the Wasserstein Space 2016 Jérémie Bigot
Elsa Cazelles
Nicolas Papadakis
+ Existence and Consistency of Wasserstein Barycenters 2015 Thibaut Le Gouic
Jean-Michel LoubĂšs
+ Existence and Consistency of Wasserstein Barycenters 2015 Thibaut Le Gouic
Jean-Michel LoubĂšs
+ Large Sample Theory for Bures-Wasserstein Barycentres 2023 Leonardo V. Santoro
Victor M. Panaretos
+ PDF Chat Penalization of Barycenters in the Wasserstein Space 2019 Jérémie Bigot
Elsa Cazelles
Nicolas Papadakis
+ PDF Chat Wasserstein barycenters over Riemannian manifolds 2016 Young‐Heon Kim
Brendan Pass
+ PDF Chat Regularized Barycenters in the Wasserstein Space 2017 Elsa Cazelles
Jérémie Bigot
Nicolas Papadakis
+ PDF Chat Existence and consistency of Wasserstein barycenters 2016 Thibaut Le Gouic
Jean-Michel LoubĂšs
+ Large deviations for random matrices in the orthogonal group and Stiefel manifold with applications to random projections of product distributions 2021 Zakhar Kabluchko
Joscha Prochno
+ Upper and lower risk bounds for estimating the Wasserstein barycenter of random measures on the real line 2018 Jérémie Bigot
RaĂșl Gouet
Thierry Klein
Alfredo Quijano-LĂłpez
+ Concentration of Measure and Large Random Matrices with an application to Sample Covariance Matrices 2018 Cosme Louart
Romain Couillet
+ PDF Chat Barycenters for the Hellinger--Kantorovich Distance Over $\mathbb{R}^d$ 2021 Gero Friesecke
Daniel Matthes
Bernhard Schmitzer
+ PDF Chat Riemannian-geometric generalizations of quantum fidelities and Bures-Wasserstein distance 2024 A. Afham
Christopher Ferrie

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors