Eigenvector decorrelation for random matrices

Type: Preprint

Publication Date: 2024-10-14

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2410.10718

Abstract

We study the sensitivity of the eigenvectors of random matrices, showing that even small perturbations make the eigenvectors almost orthogonal. More precisely, we consider two deformed Wigner matrices $W+D_1$, $W+D_2$ and show that their bulk eigenvectors become asymptotically orthogonal as soon as $\mathrm{Tr}(D_1-D_2)^2\gg 1$, or their respective energies are separated on a scale much bigger than the local eigenvalue spacing. Furthermore, we show that quadratic forms of eigenvectors of $W+D_1$, $W+D_2$ with any deterministic matrix $A\in\mathbf{C}^{N\times N}$ in a specific subspace of codimension one are of size $N^{-1/2}$. This proves a generalization of the Eigenstate Thermalization Hypothesis to eigenvectors belonging to two different spectral families.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Eigenvectors of Deformed Wigner Random Matrices 2018 Farzan Haddadi
Arash Amini
+ PDF Chat Statistics of eigenvectors in the deformed Gaussian unitary ensemble of random matrices 2016 Kevin Truong
A. Ossipov
+ Eigenvectors of Deformed Wigner Random Matrices 2018 Farzan Haddadi
Arash Amini
+ Non universality of fluctuations of outlier eigenvectors for block diagonal deformations of Wigner matrices 2018 Mireille Capitaine
Catherine Donati-Martin
+ PDF Chat Eigenvectors of Deformed Wigner Random Matrices 2020 Farzan Haddadi
Arash Amini
+ Fluctuations of deformed Wigner random matrices 2012 Zhonggen Su
+ Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices 2010 Florent Benaych-Georges
Alice Guionnet
Mylène Maïda
+ Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices 2010 Florent Benaych-Georges
Alice Guionnet
Mylène Maïda
+ Gaussian fluctuations in the Equipartition Principle for Wigner matrices 2023 Giorgio Cipolloni
László Erdős
Joscha Henheik
Oleksii Kolupaiev
+ BBP phenomena for deformed random band matrices 2023 Benson Au
+ On the Eigenvalue distribution of the deformed Wigner ensemble of random matrices 1994 A. M. Khorunzhy and L. A. Pastur
+ Statistics of eigenvectors in non-invariant random matrix ensembles 2018 Kevin Truong
+ PDF Chat Statistical properties of eigenvectors and eigenvalues of structured random matrices 2017 Kevin Truong
A. Ossipov
+ PDF Chat The largest eigenvalue of finite rank deformation of large Wigner matrices: convergence and non-universality of the fluctuations 2007 Mireille Capitaine
Catherine Donati-Martin
Delphine Féral
+ PDF Chat Eigenvectors distribution and quantum unique ergodicity for deformed Wigner matrices 2020 Lucas Benigni
+ PDF Chat Optimal decay of eigenvector overlap for non-Hermitian random matrices 2024 Giorgio Cipolloni
László Erdős
Yuanyuan Xu
+ Eigenstate Thermalization Hypothesis for Wigner-Type Matrices 2024 László Erdős
Volodymyr Riabov
+ Fluctuations of deformed Nigner random matrices 2013 Zhong-gen
Su
+ Perturbations by random matrices 2017 Florent Benaych-Georges
Nathanaël Enriquez
Alkéos Michaïl
+ PDF Chat Empirical spectral distribution of a matrix under perturbation 2017 Florent Benaych-Georges
Nathanaël Enriquez
Alkéos Michaïl

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors