On Hecke algebras and $Z$-graded twisting, Shuffling and Zuckerman functors

Type: Preprint

Publication Date: 2024-09-05

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2409.03379

Abstract

Let $g$ be a complex semisimple Lie algebra with Weyl group $W$. Let $H(W)$ be the Iwahori-Hecke algebra associated to $W$. For each $w\in W$, let $T_w$ and $C_w$ be the corresponding $Z$-graded twisting functor and $Z$-graded shuffling functor respectively. In this paper we present a categorical action of $H(W)$ on the derived category $D^b(O_0^Z)$ of the $Z$-graded BGG category $O_0^Z$ via derived twisting functors as well as a categorical action of $H(W)$ on $D^b(O_0^Z)$ via derived shuffling functors. As applications, we get graded character formulae for $T_sL(x)$ and $C_sL(x)$ for each simple reflection $s$. We describe the graded shifts occurring in the action of the $Z$-graded twisting and shuffling functors on dual Verma modules and simple modules. We also characterize the action of the derived $Z$-graded Zuckerman functors on simple modules.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Shuffling functors and spherical twists on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">b</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant="script">O</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:math> 2021 Fabian Lenzen
+ Arakawa-Suzuki functors for Whittaker modules 2018 Adam Brown
+ Arakawa-Suzuki functors for Whittaker modules 2018 Adam Brown
+ PDF Chat On Springer correspondence for wreath products 2024 You-Hung Hsu
Chun‐Ju Lai
+ PDF Chat $$G(\ell ,k,d)$$ G ( ℓ , k , d ) -modules via groupoids 2015 Volodymyr Mazorchuk
Catharina Stroppel
+ Notes on Wakamatsu's Generalized Tilting Modules 2000 恭雄 岩永
+ Twisting functors on 𝒪 2003 Henning Haahr Andersen
Catharina Stroppel
+ Modules and Hopf structures for (twisted) generalized Weyl algebras 2005 Jonas T. Hartwig
+ Projective and Whittaker functors on category $\mathcal{O}$ 2020 Juan Camilo Arias
Erik Backelin
+ PDF Chat Applications of Mutations in the Derived Categories of Weighted Projective Lines to Lie and Quantum Algebras 2018 Bangming Deng
Shiquan Ruan
Jie Xiao
+ Representation Theory of Symmetric Groups and Related Hecke Algebras 2009 Alexander Kleshchev
+ Applications of mutations in the derived categories of weighted projective lines to Lie and quantum algebras 2017 Bangming Deng
Shiquan Ruan
Jie Xiao
+ Category $\mathcal{O}$ for the Lie algebra of vector fields on the line 2022 Genqiang Liu
Mingjie Li
+ Category O for Takiff Lie algebras 2022 Matthew Chaffe
+ Blocks of symmetric groups, semicuspidal KLR algebras and zigzag Schur-Weyl duality 2016 Anton Evseev
Alexander Kleshchev
+ Blocks of symmetric groups, semicuspidal KLR algebras and zigzag Schur-Weyl duality 2016 Anton Evseev
Alexander Kleshchev
+ Generalized Schur-Weyl dualities for quantum affine symmetric pairs and orientifold KLR algebras 2023 Andrea Appel
Tomasz Przeździecki
+ G(l,k,d)-modules via groupoids 2014 Volodymyr Mazorchuk
Catharina Stroppel
+ G(l,k,d)-modules via groupoids 2014 Volodymyr Mazorchuk
Catharina Stroppel
+ PDF Chat Graded twist of Hopf algebras classification results 2020 Maeva Paradis

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors