Multiplicity-free induced characters of symmetric groups

Type: Article

Publication Date: 2024-10-10

Citations: 0

DOI: https://doi.org/10.1090/tran/9295

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a non-negative integer. Combining algebraic and combinatorial techniques, we investigate for which pairs <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper G comma rho right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(G,\rho )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a subgroup <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the symmetric group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S Subscript n"> <mml:semantics> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">S_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and an irreducible character <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="rho"> <mml:semantics> <mml:mi>ρ</mml:mi> <mml:annotation encoding="application/x-tex">\rho</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the induced character <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="rho up-arrow Superscript upper S Super Subscript n Baseline"> <mml:semantics> <mml:mrow> <mml:mi>ρ</mml:mi> <mml:mspace width="negativethinmathspace"/> <mml:msup> <mml:mo stretchy="false">↑</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">\rho \!\uparrow ^{S_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is multiplicity-free. As a result, for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-equal-to 66"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>66</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n\geq 66</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we classify all subgroups <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G less-than-or-equal-to upper S Subscript n"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>≤</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">G\leq S_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which give rise to such a pair. Moreover, for the majority of these groups <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we identify all the possible choices of the irreducible character <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="rho"> <mml:semantics> <mml:mi>ρ</mml:mi> <mml:annotation encoding="application/x-tex">\rho</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, assuming <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-equal-to 73"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>73</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n\geq 73</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • arXiv (Cornell University) - View - PDF
  • Transactions of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ Multiplicity-free induced characters of symmetric groups 2023 Pavel Turek
+ PDF Chat Products of involution classes in infinite symmetric groups 1988 Gadi Moran
+ PDF Chat Conjugacy classes whose square is an infinite symmetric group 1989 Gadi Moran
+ PDF Chat Schur indices in finite quaternion-free groups 1982 Am-suk Oh
+ Symmetric groups and expanders 2005 Martin Kassabov
+ Frobenius–Schur indicators of unipotent characters and the twisted involution module 2013 Meinolf Geck
Gunter Malle
+ PDF Chat Schur indices and sums of squares 1975 Burton Fein
+ PDF Chat Squares of conjugacy classes in the infinite symmetric groups 1987 Manfred Droste
+ Enumerating classes and characters of 𝑝-groups 2015 E. A. O’Brien
Christopher Voll
+ PDF Chat Commutators and Π-subgroups 1990 Rolf Brandl
+ PDF Chat Almost all entries in the character table of the symmetric group are multiples of any given prime 2022 Sarah Peluse
K. Soundararajan
+ The Weil-Steinberg character of finite classical groups 2009 Gerhard Hiß
Alexandre Zalesski
+ Involutions in Weyl groups 2000 Robert Kottwitz
+ Subfield symmetric spaces for finite special linear groups 2004 Toshiaki Shoji
Karine Sorlin
+ PDF Chat Closed hulls in infinite symmetric groups 1973 Franklin Haimo
+ PDF Chat Subgroup conditions for groups acting freely on products of spheres 1992 Judith H. Silverman
+ PDF Chat Characters of 𝑝-groups 1987 Charles E. Ford
+ A product decomposition of infinite symmetric groups 2002 Ákos Seress
+ Mirković-Vilonen cycles and polytopes for a symmetric pair 2009 Jiuzu Hong
+ PDF Chat The cohomology of the symmetric groups 1978 Benjamin M. Mann

Works That Cite This (0)

Action Title Year Authors