Commutator estimates for Haar shifts with general measures

Type: Preprint

Publication Date: 2024-09-02

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2409.01155

Abstract

We study $L^p(\mu)$ estimates for the commutator $[H,b]$, where the operator $H$ is a dyadic model of the classical Hilbert transform introduced in \cite{arXiv:2012.10201,arXiv:2212.00090} and is adapted to a non-doubling Borel measure $\mu$ satisfying a dyadic regularity condition which is necessary for $H$ to be bounded on $L^p(\mu)$. We show that $\|[H, b]\|_{L^p(\mu) \rightarrow L^p(\mu)} \lesssim \|b\|_{\mathrm{BMO}(\mu)}$, but to {\it characterize} martingale BMO requires additional commutator information. We prove weighted inequalities for $[H, b]$ together with a version of the John-Nirenberg inequality adapted to appropriate weight classes $\widehat{A}_p$ that we define for our non-homogeneous setting. This requires establishing reverse H\"{o}lder inequalities for these new weight classes. Finally, we revisit the appropriate class of nonhomogeneous measures $\mu$ for the study of different types of Haar shift operators.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Endpoint estimates for Haar shift operators with balanced measures 2024 José M. Conde-Alonso
Nathan A. Wagner
+ Dyadic harmonic analysis beyond doubling measures 2014 Luis Daniel López-Sánchez
José María Martell
Javier Parcet
+ PDF Chat Weighted Inequalities and Dyadic Harmonic Analysis 2012 María Pereyra
+ A sharp estimate of weighted dyadic shifts of complexity 0 and 1 2011 Alexander Reznikov
Sergei Treil
Alexander Volberg
+ On two weight estimates for dyadic operators 2016 Oleksandra Beznosova
Dae‐Won Chung
Jean Carlo Moraes
María Pereyra
+ Sharp estimates for the commutator of the Hilbert transform on weighted Lebesgue spaces 2009 Dae‐Won Chung
+ Haar bases on quasi-metric measure spaces, and dyadic structure theorems for function spaces on product spaces of homogeneous type 2015 Anna Kairema
Ji Li
María Pereyra
Lesley A. Ward
+ Haar bases on quasi-metric measure spaces, and dyadic structure theorems for function spaces on product spaces of homogeneous type 2015 Anna Kairema
Ji Li
María Pereyra
Lesley A. Ward
+ Sharp estimates for the commutators of the Hilbert, Riesz transforms and the Beurling-Ahlfors operator on weighted Lebesgue spaces 2010 Dae‐Won Chung
+ Operator-valued dyadic BMO spaces 2008 Óscar Blasco
Sandra Pott
+ PDF Chat On Two Weight Estimates for Dyadic Operators 2017 Oleksandra Beznosova
Dae‐Won Chung
Jean Carlo Moraes
María Pereyra
+ PDF Chat Dyadic Harmonic Analysis and Weighted Inequalities: The Sparse Revolution 2019 María Pereyra
+ Sharp estimates for the commutators of the Hilbert, Riesz transforms and the Beurling-Ahlfors operator on weighted Lebesgue spaces 2010 Dae‐Won Chung
+ Sharp bounds for general commutators on weighted Lebesgue spaces 2010 Dae‐Won Chung
Cristina Pereyra
Carlos Pérez
+ Sharp bounds for general commutators on weighted Lebesgue spaces 2010 Dae‐Won Chung
Cristina Pereyra
Carlos Perez
+ PDF Chat Sharp estimates for the commutators of the Hilbert, Riesz transforms and the Beurling-Ahlfors operator on weighted Lebesgue spaces 2011 Dae‐Won Chung
+ Weak-type estimates for Haar shift operators: Sharp power on the A(p) characteristic 2009 Michael T. Lacey
Tuomas Hytönen
Armen Vagharshakyan
María Carmen Reguera
+ Sharp A 2 inequality for Haar shift operators 2009 Michael T. Lacey
Stefanie Petermichl
María Carmen Reguera
+ Operator-valued dyadic harmonic analysis beyond doubling measures 2014 José M. Conde-Alonso
Luis Daniel López-Sánchez
+ Operator-valued dyadic harmonic analysis beyond doubling measures 2014 José M. Conde-Alonso
Luis Daniel López-Sánchez

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors