A New Binary BBP-Type Formula for √5 log <i>ϕ</i>

Type: Article

Publication Date: 2014-11-01

Citations: 0

DOI: https://doi.org/10.1080/00150517.2014.12427885

Locations

  • ˜The œFibonacci quarterly - View

Similar Works

Action Title Year Authors
+ A Lower Bound for π (<i>n</i>) 1975 Robert E. Dressler
+ 108.12 Proof without words: a lower bound for <i>n</i>! 2024 Mehdi Hassani
+ Appendix B: Bounds for the <i>q</i> ‐Factorial 2010 Alexis De Vos
+ 2791. A formula for log <i>t</i> 1958 S. J. Tupper
+ The <i>q</i>-Binomial Theorem 2017
+ A New Binary BBP-type Formula for $\sqrt 5\,\log\phi$ 2016 Kunle Adegoke
+ A New Binary BBP-type Formula for $\sqrt 5\,\log\phi$ 2016 Kunle Adegoke
+ The simplest upper bound for <i>G(k)</i> 1997 R. C. Vaughan
+ A New Binary BBP-type Formula for $\sqrt 5\,\logϕ$ 2016 Kunle Adegoke
+ A Bombieri–Vinogradov type exponential sum result with applications 2009 Kaisa Matomäki
+ An Improved Lower Bound For g(^4^)^(18) 2004 M Gruettmueller
IT Roberts
Robert O. Stanton
+ A Bombieri-type theorem for exponential sums 2013 Wei Yao
+ Is the Conjecture We Made for <i>A</i><sub><i>n</i></sub>(<i>p</i>) a Good One? 2021
+ The Tuza Constant $$c_4$$ 2020 Michael A. Henning
Anders Yeo
+ The <i>η</i> Function and Dedekind Sums 2017 Ranjan Roy
+ 𝑞-binomial theorem 2018
+ Lower bound of overall exponential sums for polynomialsϕ(x d ) 1989 L. A. Bassalygo
Victor Alexandrovich Zinov'ev
S. N. Licyn
+ <i>Have you seen this?</i>… Students and Proof: Bounds and Functions. A DVD for Mathematicians 2009 Lara Alcock
+ 85.41 Sharper bounds for the factorial of <i>n</i> 2001 Phillip M. Edwards
Munir Mahmood
+ THE THEORY <b> <i>V</i> </b><sup>1</sup> AND POLYNOMIAL TIME 2010 Stephen Cook
Phuong Minh Binh Nguyen

Works That Cite This (0)

Action Title Year Authors