Norm inflation for a higher-order nonlinear Schr\"odinger equation with a derivative on the circle

Type: Preprint

Publication Date: 2024-07-25

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2407.17782

Abstract

We consider a periodic higher-order nonlinear Schr\"odinger equation with the nonlinearity $u^k \partial_x u$, where $k$ is a natural number. We prove the norm inflation in a subspace of the Sobolev space $H^s(\mathbb{T})$ for any $s \in \mathbb{R}$. In particular, the Cauchy problem is ill-posed in $H^s(\mathbb{T})$ for any $s \in \mathbb{R}$.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ A remark on norm inflation for nonlinear Schrödinger equations 2018 Nobu Kishimoto
+ A remark on norm inflation with general initial data for the cubic nonlinear Schr\"odinger equations in negative Sobolev spaces 2015 Tadahiro Oh
+ A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces 2015 Tadahiro Oh
+ PDF Chat A remark on norm inflation for nonlinear Schrödinger equations 2018 Nobu Kishimoto
+ PDF Chat Norm-inflation for periodic NLS equations in negative Sobolev spaces 2015 Rémi Carles
Thomas Kappeler
+ On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle 2015 Tadahiro Oh
Yuzhao Wang
+ On the ill-posedness of the cubic nonlinear Schr\"odinger equation on the circle 2015 Tadahiro Oh
Yuzhao Wang
+ PDF Chat Norm-inflation with Infinite Loss of Regularity for Periodic NLS Equations in Negative Sobolev Spaces 2017 Rémi Carles
Thomas Kappeler
+ PDF Chat A Remark on Norm Inflation with General Initial Data for the Cubic Nonlinear Schrödinger Equations in Negative Sobolev Spaces 2017 Tadahiro Oh
+ Norm inflation for the derivative nonlinear Schrödinger equation 2022 Yuzhao Wang
Younes Zine
+ PDF Chat Well- and ill-posedness of the Cauchy problem for semi-linear Schr\"odinger equations on the torus 2025 Toshiki Kondo
Mamoru Okamoto
+ Ill-posedness of quintic fourth order Schrödinger equation 2022 Bo Xia
Deng Zhang
+ Norm inflation for the derivative nonlinear Schrödinger equation 2024 Yuzhao Wang
Younes Zine
+ Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces 2017 Tadahiro Oh
Yuzhao Wang
+ Well-posedness for the fourth-order Schrödinger equation with third order derivative nonlinearities 2020 Hiroyuki Hirayama
Masahiro Ikeda
Tomoyuki Tanaka
+ PDF Chat Non-Existence of Solutions for the Periodic Cubic NLS below ${L}^{{2}}$ 2016 Zihua Guo
Tadahiro Oh
+ Non-existence of solutions for the periodic cubic NLS below $L^2$ 2015 Zihua Guo
Tadahiro Oh
+ Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation 2019 Kihoon Seong
+ An optimal regularity result on the quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation 2017 Tadahiro Oh
Philippe Sosoe
Nikolay Tzvetkov
+ Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line 2016 Antoine Choffrut
Oana Pocovnicu

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors