Type: Preprint
Publication Date: 2024-07-25
Citations: 0
DOI: https://doi.org/10.48550/arxiv.2407.17782
We consider a periodic higher-order nonlinear Schr\"odinger equation with the nonlinearity $u^k \partial_x u$, where $k$ is a natural number. We prove the norm inflation in a subspace of the Sobolev space $H^s(\mathbb{T})$ for any $s \in \mathbb{R}$. In particular, the Cauchy problem is ill-posed in $H^s(\mathbb{T})$ for any $s \in \mathbb{R}$.
Action | Title | Year | Authors |
---|
Action | Title | Year | Authors |
---|