Integral Hasse principle for Markoff type cubic surfaces

Type: Preprint

Publication Date: 2024-08-13

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2408.06846

Abstract

We establish new upper bounds on the number of failures of the integral Hasse principle within the family of Markoff type cubic surfaces $x^2+ y^2+ z^2- xyz= a$ with $|a|\leq A$ as $A\to \infty$. Our bound improves upon existing work of Ghosh and Sarnak. As a result, we demonstrate that the integral Hasse principle holds for a density $1$ of surfaces in certain sparse sequences.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Integral points on Markoff type cubic surfaces 2022 Amit Ghosh
Peter Sarnak
+ PDF Chat Brauer–Manin obstruction for integral points on Markoff-type cubic surfaces 2023 Quang-Duc Dao
+ Cubic surfaces failing the integral Hasse principle 2023 Julian Lyczak
Vladimir Mitankin
H. Uppal
+ PDF Chat A positive proportion of Hasse principle failures in a family of Châtelet surfaces 2019 Nick Rome
+ Brauer-Manin obstruction for integral points on Markoff-type cubic surfaces 2022 Quang-Duc Dao
+ Integral Hasse principle and strong approximation for Markoff surfaces. 2018 Daniel Loughran
Vladimir Mitankin
+ Integral Hasse principle and strong approximation for Markoff surfaces 2018 Daniel Loughran
Vladimir Mitankin
+ PDF Chat Integral Hasse Principle and Strong Approximation for Markoff Surfaces 2019 Daniel Loughran
Vladimir Mitankin
+ A Chabauty–Coleman bound for surfaces 2023 Jerson Caro
Héctor Pastén
+ The hasse principle for cubic surfaces 1972 Horst G. Zimmer
+ PDF Chat Integral points on cubic surfaces: heuristics and numerics 2024 T. D. Browning
Florian Wilsch
+ PDF Chat Failures of the integral Hasse principle for affine quadric surfaces 2017 Vladimir Mitankin
+ Theory of minimal surfaces and a counter-example to the Bernstein conjecture in high dimensions 1970 Enrico Bombieri
+ PDF Chat Order <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>5</mml:mn></mml:math> Brauer–Manin obstructions to the integral Hasse principle on log K3 surfaces 2022 Julian Lyczak
+ On a certain non-split cubic surface 2017 Régis de la Bretèche
Jianya Liu
Jie Wu
Yongqiang Zhao
+ PDF Chat Density of Châtelet surfaces failing the Hasse principle 2013 Régis de la Bretèche
T. D. Browning
+ Hasse principle for a family of K3 surfaces 2020 Daniel Loughran
+ Order 5 Brauer-Manin obstructions to the integral Hasse principle on log K3 surfaces 2020 Julian Lyczak
+ PDF Chat The Sard conjecture on Martinet surfaces 2018 André Belotto da Silva
Ludovic Rifford
+ Bernstein type theorems for minimal surfaces in $(\alpha,\beta)$-space 2009 Ningwei Cui
Yibing Shen

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors