Zeckendorf’s Theorem Using Indices in an Arithmetic Progression

Type: Article

Publication Date: 2021-11-01

Citations: 1

DOI: https://doi.org/10.1080/00150517.2021.12427506

Locations

  • ˜The œFibonacci quarterly - View

Similar Works

Action Title Year Authors
+ Chen’ s theorem in arithmetical progressions 1989 Minggao Lu
Cai Yingchun
+ ROTH'S THEOREM ON ARITHMETIC PROGRESSIONS 2003 Alex Iosevich
+ The Van der Waerden theorem on arithmetical progressions 2000 Victor V. Prasolov
+ Primes in an Arithmetic Progression 2005
+ A note on Mertens' formula for arithmetic progressions 2007 Alessandro Languasco
Alessandro Zaccagnini
+ Piatetski-Shapiro primes in arithmetic progressions 2022 Victor Zhenyu Guo
Jinjiang Li
Min Zhang
+ PDF Chat Arithmetic progressions (mod 𝑚) 2003 Bruce Landman
Aaron Robertson
+ Merten's theorem for arithmetic progressions 1974 Kenneth S. Williams
+ Arithmetic progressions that consist only of primes 1982 Emil Grosswald
+ The Prime Number Theorem for arithmetic progressions 2019
+ Counting Primes in Arithmetic Progressions 2015 John Friedlander
+ Arithmetic progressions in permutations (thesis) 2011 Kyle Parsons
+ Prime Numbers in Arithmetic Progressions with Difference 24 1965 Paul T. Bateman
Marc E. Low
+ Tom Sanders - Roth's theorem on arithmetic progressions 2013 Tom Sanders
Fanny Bastien
Vanille Beaumont
+ Prime numbers in arithmetic progressions 1972 Saburô Uchiyama
+ Prime Numbers in Arithmetic Progressions 1993 Anatolij A. Karatsuba
Melvyn B. Nathanson
+ Prime numbers in arithmetic progressions 1991 Helmut Koch
+ Balancing non-Wieferich primes in arithmetic progressions 2019 Utkal Keshari Dutta
Bijan Kumar Patel
Prasanta Kumar Ray
+ Corrigendum to “Non-Wieferich primes in arithmetic progressions” 2018 Yong-Gao Chen
Yuchen Ding
+ Of Arithmetical Progressions 1972 Leonard Euler

Works That Cite This (0)

Action Title Year Authors