Convergence and high order of approximation by Steklov sampling operators

Type: Article

Publication Date: 2024-08-30

Citations: 2

DOI: https://doi.org/10.1007/s43037-024-00377-3

Abstract

Abstract In this paper we introduce a new class of sampling-type operators, named Steklov sampling operators. The idea is to consider a sampling series based on a kernel function that is a discrete approximate identity, and which constitutes a reconstruction process of a given signal f , based on a family of sample values which are Steklov integrals of order r evaluated at the nodes k / w , $$k \in {\mathbb {Z}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>Z</mml:mi> </mml:mrow> </mml:math> , $$w&gt;0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>w</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> . The convergence properties of the introduced sampling operators in continuous functions spaces and in the $$L^p$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math> -setting have been studied. Moreover, the main properties of the Steklov-type functions have been exploited in order to establish results concerning the high order of approximation. Such results have been obtained in a quantitative version thanks to the use of the well-known modulus of smoothness of the approximated functions, and assuming suitable Strang-Fix type conditions, which are very typical assumptions in applications involving Fourier and Harmonic analysis. Concerning the quantitative estimates, we proposed two different approaches; the first one holds in the case of Steklov sampling operators defined with kernels with compact support, its proof is substantially based on the application of the generalized Minkowski inequality, and it is valid with respect to the p -norm, with $$1 \le p \le +\infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤</mml:mo> <mml:mo>+</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> . In the second case, the restriction on the support of the kernel is removed and the corresponding estimates are valid only for $$1 &lt; p\le +\infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>&lt;</mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤</mml:mo> <mml:mo>+</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> . Here, the key point of the proof is the application of the well-known Hardy–Littlewood maximal inequality. Finally, a deep comparison between the proposed Steklov sampling series and the already existing sampling-type operators has been given, in order to show the effectiveness of the proposed constructive method of approximation. Examples of kernel functions satisfying the required assumptions have been provided.

Locations

  • Banach Journal of Mathematical Analysis - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Approximation Properties of Mellin-Steklov Type Exponential Sampling Series 2024 Derya Özer Kaya
Sadettin Kursun
Tuncer Acar
+ Sharp $L_p$-error estimates for sampling operators 2022 Yurii Kolomoitsev
Tetiana Lomako
+ On approximation properties of generalized Kantorovich-type sampling operators 2015 Olga Orlova
Gert Tamberg
+ On approximation properties of generalized Kantorovich-type sampling operators 2015 Olga Orlova
Gert Tamberg
+ PDF Chat A unifying approach for the study of linear sampling type operators in function spaces 2015 Gianluca Vıntı
Luca Zampogni
+ PDF Chat Approximation Properties of the Sampling Kantorovich Operators: Regularization, Saturation, Inverse Results and Favard Classes in $$L^p$$-Spaces 2022 Danilo Costarellı
Gianluca Vıntı
+ Approximation of functions of high smoothness by Fourier operators 1992 А. И. Степанец
+ PDF Chat Order of approximation for sampling Kantorovich operators 2014 Danilo Costarellı
Gianluca Vinti
+ Optimal sampling recovery of mixed order Sobolev embeddings via discrete Littlewood-Paley type characterizations 2016 Glenn Byrenheid
Tino Ullrich
+ Sampling and reconstruction of signals in a reproducing kernel subspace of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mi>d</mml:mi></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> 2010 M. Zuhair Nashed
Qiyu Sun
+ Multiwavelet sampling theorem in Sobolev spaces 2010 YouFa Li
Shouzhi Yang
+ Optimal sampling recovery of mixed order Sobolev embeddings via discrete Littlewood-Paley type characterizations 2016 Glenn Byrenheid
Tino Ullrich
+ Rates of Approximation for General Sampling-Type Operators in the Setting of Filter Convergence 2013 Antonio Boccuto
Xenofon Dimitriou
+ Approximation by generalized Kantorovich sampling type series 2017 A. Sathish Kumar
P. Devaraj
+ Rates of approximation for general sampling-type operators in the setting of filter convergence 2014 Antonio Boccuto
Xenofon Dimitriou
+ Multivariate exact and falsified sampling approximation 2014 A. Krivoshein
M. Skopina
+ Sampling Theory and Reproducing Kernel Hilbert Spaces 2015 Antonio G. Garcı́a
+ PDF Chat Approximation results in Sobolev and fractional Sobolev spaces by sampling Kantorovich operators 2023 Marco Cantarini
Danilo Costarellı
Gianluca Vıntı
+ Convergence properties of Durrmeyer-type sampling operators 2024 V. D. Sharma
Vijay Gupta
+ Order of approximation for nonlinear sampling Kantorovich operators in Orlicz spaces 2013 Danilo Costarellı
Gianluca Vıntı