Type: Preprint
Publication Date: 2024-07-15
Citations: 0
DOI: https://doi.org/10.48550/arxiv.2407.10728
It is shown that there exist a probability space $(X,{\mathcal X},\mu)$, two ergodic measure preserving transformations $T,S$ acting on $(X,{\mathcal X},\mu)$ with $h_\mu(X,T)=h_\mu(X,S)=0$, and $f, g \in L^\infty(X,\mu)$ such that the limit \begin{equation*} \lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1} f(T^{n}x)g(S^{n}x) \end{equation*} does not exist in $L^2(X,\mu)$.
Action | Title | Year | Authors |
---|
Action | Title | Year | Authors |
---|