Type: Preprint
Publication Date: 2024-07-09
Citations: 0
DOI: https://doi.org/10.48550/arxiv.2407.07929
The Unified Gas-Kinetic Wave-Particle (UGKWP) method is constructed for partially ionized plasma (PIP). This method possesses both multiscale and unified preserving (UP) properties. The multiscale property allows the method to capture a wide range of plasma physics, from the particle transport in the kinetic regime to the two-fluid and magnetohydrodynamics (MHD) in the near continuum regimes, with the variation of local cell Knudsen number and normalized Larmor radius.The unified preserving property ensures that the numerical time step is not limited by the particle collision time in the continuum regime for the capturing of dissipative macroscopic solutions of the resistivity, Hall-effect, and all the way to the ideal MHD equations.The UGKWP is clearly distinguishable from the classical single scale Particle-in-Cell/Monte Carlo Collision (PIC/MCC) methods.The UGKWP method combines the evolution of microscopic velocity distribution with the evolution of macroscopic mean field quantities, granting it UP properties. Moreover, the time step in UGKWP is not constrained by the plasma cyclotron period through the Crank-Nicolson scheme for fluid and electromagnetic field interactions. The momentum and energy exchange between different species is approximated by the Andries-Aoki-Perthame (AAP) model. Overall, the UGKWP method enables a smooth transition from the PIC method in the rarefied regime to the MHD solvers in the continuum regime. This method has been extensively tested on a variety of phenomena ranging from kinetic Landau damping to the macroscopic flow problems, such as the Brio-Wu shock tube, Orszag-Tang vortex, and Geospace Environmental Modeling (GEM) magnetic reconnection. These tests demonstrate that the proposed method can capture the fundamental features of PIP across different scales seamlessly.
Action | Title | Year | Authors |
---|
Action | Title | Year | Authors |
---|