Oscillatory integral operators and variable Schr\"odinger propagators: beyond the universal estimates

Type: Preprint

Publication Date: 2024-07-09

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2407.06980

Abstract

We consider a class of H\"ormander-type oscillatory integral operators in $\mathbb{R}^n$ for $n \geq 3$ odd with real analytic phase. We derive weak conditions on the phase which ensure $L^p$ bounds beyond the universal $p \geq 2 \cdot \frac{n+1}{n-1}$ range guaranteed by Stein's oscillatory integral theorem. This expands and elucidates pioneering work of Bourgain from the early 1990s. We also consider a closely related class of variable coefficient Schr\"odinger propagator-type operators, and show that the corresponding theory differs significantly from that of the H\"ormander-type operators. The main ingredient in the proof is a curved Kakeya/Nikodym maximal function estimate. This is established by combining the polynomial method with certain uniform sublevel set estimates for real analytic functions. The sublevel set estimates are the main novelty in the argument and can be interpreted as a form of quantification of linear independence in the $C^{\omega}$ category.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Sharp $$L^{p}$$ L p -boundedness of oscillatory integral operators with polynomial phases 2016 Zuoshunhua Shi
Dunyan Yan
+ PDF Chat Sharp $L^2$ bounds for oscillatory integral operators with $C^\infty$ phases 2001 Slava Rychkov
+ Uniform Estimates for Oscillatory Integral Operators with Polynomial Phases 2024 Zuoshunhua Shi
+ Auxiliary Results 2016 Isroil A. Ikromov
Detlef Müller
+ A dichotomy for Hörmander-type oscillatory integral operators 2022 Shaoming Guo
Sheng Wang
Ruixiang Zhang
+ Damped Oscillatory Integral Operators with Analytic Phases 1998 D. H. Phong
E. M. Stein
+ PDF Chat Oscillatory integrals with polynomial phase. 1991 Daniel M. Oberlin
+ Maximal estimates for oscillatory integrals with concave phase 1995 Björn G. Walther
+ Sharp Bounds for Oscillatory Integral Operators with Homogeneous Polynomial Phases 2019 Danqing He
Zuoshunhua Shi
+ A polynomial Carleson operator along the paraboloid 2015 Lillian B. Pierce
Po‐Lam Yung
+ PDF Chat Simply nondegenerate multilinear oscillatory integral operators with smooth phase 2008 Michael Greenblatt
+ Oscillatory integrals with polynomial phases 1992 D. H. Phong
E. M. Stein
+ Oscillatory integrals and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math> estimates for Schrödinger equations 2008 Xiaohua Yao
Quan Zheng
+ PDF Chat A polynomial Carleson operator along the paraboloid 2019 Lillian B. Pierce
Po‐Lam Yung
+ Decay estimates for oscillatory integrals with polynomial phase 2003 Brian Felkel
+ Oscillatory integrals with polynomial phase 2007 Ιωάννης Παρίσσης
+ Oscillatory Integrals with Polynomial Phase 2007 Ioannis Parissis
+ PDF Chat Some sharp $L^2 \to L^p$ decay estimates for $(2+1)$-dimensional degenerate oscillatory integral operators 2024 Shaozhen Xu
+ Weighted norm inequalities for oscillatory integrals with finite type phases on the line 2011 Jonathan Bennett
Samuel Harrison
+ Weighted norm inequalities for oscillatory integrals with finite type phases on the line 2011 Jonathan Bennett
S. Lorenzo Harrison

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors