On integral Chang-Skjelbred computations with disconnected isotropy groups

Type: Preprint

Publication Date: 2024-07-03

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2407.03052

Abstract

The Chang-Skjelbred method computes the cohomology of a suitable space with a torus action from its equivariant one-skeleton. We show that, under certain restrictions on the cohomological torsion, the integral cohomology is encoded in the one-skeleton even in the presence of arbitrary disconnected isotropy groups. We provide applications to Hamiltonian actions as well as to the GKM case. In the latter, our results lead to a modification of the GKM formula for graph cohomology.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The equivariant cohomology of Hamiltonian $G$-spaces From Residual $S^1$ Actions 2001 Rebecca Goldin
Tara S. Holm
+ On the equivariant cohomology of isotropy actions 2018 Sam Hagh Shenas Noshari
+ A concise introduction to GKM theory, 25 years on 2024 Julianna Tymoczko
+ One-Skeletons and Equivariant Cohomology 1999 Victor Guillemin
Catalin Zara
+ PDF Chat GKM manifolds are not rigid 2022 Oliver Goertsches
Panagiotis Konstantis
Leopold Zoller
+ PDF Chat Towards generalizing Schubert calculus in the symplectic category 2009 Rebecca Goldin
Susan Tolman
+ GKM manifolds are not rigid 2020 Oliver Goertsches
Panagiotis Konstantis
Leopold Zoller
+ PDF Chat The equivariant cohomology of Hamiltonian $G$-spaces From Residual $S^1$ Actions 2001 Rebecca Goldin
Tara S. Holm
+ GKM actions on cohomogeneity one manifolds 2022 Oliver Goertsches
Eugenia Loiudice
Giovanni Russo
+ On the Kunneth Formula for Intersection Cohomology 1992 Daniel C. Cohen
Mark Goresky
Lizhen Ji
+ Hamiltonian torus actions in equivariant cohomology and symplectic topology 2012 Milena Pabiniak
+ Towards Generalizing Schubert Calculus in the Symplectic Category 2009 Rebecca Goldin
Susan Tolman
+ The Overconvergent Site, Descent, and Cohomology with Compact Support 2016 Christopher Lazda
Ambrus Pál
+ Adjoint twisted Reidemeister torsion and Gram matrices 2021 Ka Ho Wong
Yang Tian
+ PDF Chat A Gromov-Witten approach to $G$-equivariant birational invariants 2024 Leonardo F. Cavenaghi
Lino Grama
Ludmil Katzarkov
+ None 2004 Victor Guillemin
Tara Holm
+ Torus Actions 2021 Valentina Georgoulas
Joel W. Robbin
Dietmar Salamon
+ PDF Chat Adjoint twisted Reidemeister torsion and Gram matrices 2024 Ka Ho Wong
Tian Yang
+ PDF Chat New Tools for Classifying Hamiltonian Circle Actions with Isolated Fixed Points 2014 Leonor Godinho
Silvia Sabatini
+ On equivariant cohomology for non-compact group actions 2004 Matvei Libine

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors