MAKING BAYESIAN DISEASE MAPPING EASY AND INTERACTIVE: AN R SHINY APPLICATION

Type: Article

Publication Date: 2023-12-29

Citations: 1

DOI: https://doi.org/10.14710/medstat.16.2.148-159

Abstract

Spatial analysis of count data is important in epidemiology and other domains to identify spatial patterns. While Bayesian spatial models are a popular approach, they do require detailed knowledge of the process for model fitting, checking, and visualising results. Although a number of R packages are available to simplify running the model, there are still complexities when checking the model. This paper aims to provide a user-friendly and interactive R Shiny web application for the analysis of spatial data using Bayesian spatial Conditional Autoregressive Leroux models. The web application is built with the integration of the R packages shiny and CARBayes. The required data are the number of cases, population, and optionally some covariates for each region. In this case, we used Covid-19 data in 2021 in South Sulawesi province, Indonesia. This application enables fitting a Bayesian spatial CAR Leroux model under several hyperpriors and selecting the most appropriate through comparing several goodness of fit measures. The application also enables checking convergence, plus obtaining and visualising in an interactive map the relative risk of disease for each region.

Locations

Similar Works

Action Title Year Authors
+ PDF Chat Bayesian spatial conditional autoregressive (CAR) Leroux model of Covid-19 cases in Makassar, Indonesia 2022 Aswi
Muhammad Arif Tiro
Zulkifli Rais
+ PDF Chat RELATIVE RISK OF CORONAVIRUS DISEASE (COVID-19) IN SOUTH SULAWESI PROVINCE, INDONESIA: BAYESIAN SPATIAL MODELING 2021 Aswi Aswi
Andi Mauliyana
Muhammad Arif Tiro
Muhammad Nadjib Bustan
+ PDF Chat THE INTERPLAY BETWEEN CLUSTERS, COVARIATES, AND SPATIAL PRIORS IN SPATIAL MODELLING OF COVID-19 IN SOUTH SULAWESI PROVINCE, INDONESIA 2022 Aswi Aswi
Muhammad Arif Tiro
Sudarmin Sudarmin
Sukarna Sukarna
Susanna Cramb
+ PDF Chat Factors Affecting the Covid-19 Risk in South Sulawesi Province, Indonesia: A Bayesian Spatial Model 2022 Aswi Aswi
Sukarna Sukarna
+ Bayesian disease mapping: Past, present, and future 2022 Ying C. MacNab
+ PDF Chat EVALUASI MODEL-MODEL BAYESIAN SPASIAL CONDITIONAL AUTOREGRESSIVE UNTUK PEMODELAN KASUS KEMATIAN CORONA VIRUS DISEASE (COVID-19) DI INDONESIA 2023 Andi Feriansyah
Aswi Aswi
Ruliana
+ Association of Population Density and Distance to the City with the Risks of COVID-19: A Bayesian Spatial Analysis 2021 M A Tiro
A. Aswi
Zulkifli Rais
+ PDF Chat Multivariate Bayesian Semiparametric Regression Model for Forecasting and Mapping HIV and TB Risks in West Java, Indonesia 2023 I Gede Nyoman Mindra Jaya
Budhi Handoko
Yudhie Andriyana
Anna Chadidjah
Farah Kristiani
Mila Antikasari
+ PDF Chat How Spatial Epidemiology Helps Understand Infectious Human Disease Transmission 2022 Chia鈥怘sien Lin
Tzai鈥怘ung Wen
+ An谩lisis espaciotemporal del primer mill贸n de casos de SARS-CoV-2 en Colombia. La importancia de la conectividad de regiones en la propagaci贸n 2023 Gina Paola Infante
Milena Edith Borb贸n Ramos
William Le贸n Quevedo
Diana Marcela Walteros Acero
F. Alvarado
+ PDF Chat Spatial Estimation for Tuberculosis Relative Risk in Aceh Province, Indonesia: A Bayesian Conditional Autoregressive Approach with the Besag-York-Mollie (BYM) Model 2024 Novi Reandy Sasmita
+ PDF Chat Analyse spatiale et 茅pid茅miologie pour l'aide 脿 la d茅cision dans la lutte contre le Covid-19 en C么te d鈥橧voire 2021 Cataud Marius Gu茅d茅
Bouadi Arnaud Ferrand Koffi
Gu茅 Pierre Guele
+ Spatial Modelling of Covid-19 Confirmed Cases in Kalimantan, Indonesia: How Neighborhood Matters? 2021 Muhammad Luthfi Setiarno Putera
Laili Wahyunita
Febrianawati Yusup
+ PDF Chat Comparison of different software implementations for spatial disease mapping 2019 Maren Vranckx
Thomas Neyens
Christel Faes
+ PDF Chat Space-time interactions in Bayesian disease mapping with recent tools: Making things easier for practitioners 2022 Arantxa Urdangarin
T. Goicoa
M. D. Ugarte
+ PDF Chat Peter J. Diggle鈥檚 Discussion Contribution to Papers in Session 1 of the Royal Statistical Society鈥檚 Special Topic Meeting on COVID-19 Transmission: 9 June 2021 2022 Peter J. Diggle
+ Data and R code to accompany 'Spatial connectivity in mosquito-borne disease models: a systematic review of methods and assumptions' 2021 Sophie Lee
+ Flexible Bayesian hierarchical spatial modeling in disease mapping. 2022 Kassahun Ayalew
+ Flexible Bayesian hierarchical spatial modelling in disease mapping. 2022 Kassahun Ayalew
+ PDF Chat DEVELOPING GEOGRAPHICALLY WEIGHTED PANEL REGRESSION MODEL FOR SPATIO-TEMPORAL ANALYSIS OF COVID-19 POSITIVE CASES IN KALIMANTAN, INDONESIA 2022 Sifriyani Sifriyani
Idris Mandang
F.D.T. Amijaya
Rizal Hafiz Ruslan

Works That Cite This (0)

Action Title Year Authors