Secant loci of scrolls over curves

Type: Other

Publication Date: 2024-01-01

Citations: 0

DOI: https://doi.org/10.1090/conm/803/16102

Abstract

Given a curve <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C"> <mml:semantics> <mml:mi>C</mml:mi> <mml:annotation encoding="application/x-tex">C</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and a linear series <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script l"> <mml:semantics> <mml:mi>ℓ</mml:mi> <mml:annotation encoding="application/x-tex">\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C"> <mml:semantics> <mml:mi>C</mml:mi> <mml:annotation encoding="application/x-tex">C</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the secant locus <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V Subscript e Superscript e minus f Baseline left-parenthesis script l right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>V</mml:mi> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>e</mml:mi> <mml:mo>−</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ℓ</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">V^{e-f}_e( \ell )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> parametrises effective divisors of degree <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="e"> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding="application/x-tex">e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which impose at most <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="e minus f"> <mml:semantics> <mml:mrow> <mml:mi>e</mml:mi> <mml:mo>−</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">e-f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> conditions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script l"> <mml:semantics> <mml:mi>ℓ</mml:mi> <mml:annotation encoding="application/x-tex">\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E right-arrow upper C"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo stretchy="false">→</mml:mo> <mml:mi>C</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">E \to C</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a vector bundle of rank <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding="application/x-tex">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we define determinantal subschemes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript e Superscript e minus f Baseline left-parenthesis script l right-parenthesis subset-of-or-equal-to normal upper H normal i normal l normal b Superscript e Baseline left-parenthesis double-struck upper P upper E right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>e</mml:mi> <mml:mo>−</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ℓ</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">H</mml:mi> <mml:mi mathvariant="normal">i</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> <mml:mi mathvariant="normal">b</mml:mi> </mml:mrow> <mml:mi>e</mml:mi> </mml:msup> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">P</mml:mi> </mml:mrow> <mml:mi>E</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">H^{e-f}_e ( \ell )\subseteq \mathrm {Hilb}^e ( \mathbb {P}E )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Q Subscript e Superscript e minus f Baseline left-parenthesis upper V right-parenthesis subset-of-or-equal-to normal upper Q normal u normal o normal t Superscript 0 comma e Baseline left-parenthesis upper E Superscript asterisk Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>Q</mml:mi> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>e</mml:mi> <mml:mo>−</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">Q</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">o</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>e</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mi>E</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">Q^{e-f}_e(V)\subseteq \mathrm {Quot}^{0, e} ( E^* )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which generalise <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V Subscript e Superscript e minus f Baseline left-parenthesis script l right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>V</mml:mi> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>e</mml:mi> <mml:mo>−</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ℓ</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">V^{e-f}_e( \ell )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, giving several examples. We describe the Zariski tangent spaces of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Q Subscript e Superscript e minus f Baseline left-parenthesis upper V right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>Q</mml:mi> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>e</mml:mi> <mml:mo>−</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">Q^{e-f}_e(V)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and give examples showing that smoothness of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Q Subscript e Superscript e minus f Baseline left-parenthesis upper V right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>Q</mml:mi> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>e</mml:mi> <mml:mo>−</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">Q^{e-f}_e(V)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not necessarily controlled by injectiveness of a Petri map. We generalise the Abel–Jacobi map and the notion of linear series to the context of Quot schemes. We give some sufficient conditions for nonemptiness of generalised secant loci, and a criterion in the complete case when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f equals 1"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">f = 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in terms of the Segre invariant <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s 1 left-parenthesis upper E right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>s</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">s_1 (E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This leads to a geometric characterisation of semistability similar to that in [Quot schemes, Segre invariants, and inflectional loci of scrolls over curves, Geom. Dedicata 205 (2020), 1–19]. Using these ideas, we also give a partial answer to a question of Lange on very ampleness of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper O Subscript double-struck upper P upper E Baseline left-parenthesis 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">P</mml:mi> </mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {O}_{\mathbb {P}E}(1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and show that for any curve, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Q Subscript e Superscript e minus 1 Baseline left-parenthesis upper V right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>Q</mml:mi> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>e</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">Q^{e-1}_e(V)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is either empty or of the expected dimension for sufficiently general <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding="application/x-tex">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. When <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Q Subscript e Superscript e minus 1 Baseline left-parenthesis upper V right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>Q</mml:mi> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>e</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">Q^{e-1}_e(V)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has and attains expected dimension zero, we use formulas of Oprea–Pandharipande and Stark to enumerate <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Q Subscript e Superscript e minus 1 Baseline left-parenthesis upper V right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>Q</mml:mi> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>e</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">Q^{e-1}_e(V)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We mention several possible avenues of further investigation.

Locations

  • Contemporary mathematics - American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Towards a Halphen theory of linear series on curves 1999 Luca Chiantini
Ciro Ciliberto
+ PDF Chat Linear series with an 𝑁-fold point on a general curve 1991 David Schubert
+ Subcanonical points on algebraic curves 2012 Evan M. Bullock
+ PDF Chat A restriction theorem for space curves 1978 Elena Prestini
+ PDF Chat On analytic irreducibility at ∞ of a pencil of curves 1974 T. T. Moh
+ PDF Chat Linear series with cusps and 𝑛-fold points 1987 David Schubert
+ PDF Chat Algebraic curves in 𝑅𝑃(1)×𝑅𝑃(1) 1991 Patrick M. Gilmer
+ On the differential geometry of holomorphic plane curves 2020 Jorge Luiz Deolindo Silva
Farid Tari
+ PDF Chat Refined Selmer equations for the thrice-punctured line in depth two 2023 Alex J. Best
Laurie Betts
Theresa Kumpitsch
Martin Lüdtke
Angus McAndrew
Lie Qian
Elie Studnia
Yujie Xu
+ PDF Chat Effective cone of the blowup of the symmetric product of a curve 2024 Antonio Laface
Luca Ugaglia
+ PDF Chat On closed twisted curves 1990 Sueli I. R. Costa
+ PDF Chat Quasiconformal mappings and chord-arc curves 1988 Stephen Semmes
+ Star configuration points and generic plane curves 2011 Enrico Carlini
Adam Van Tuyl
+ PDF Chat The least area bounded by multiples of a curve 1984 Brian White
+ On the slope of non-algebraic holomorphic foliations 2020 Jie Hong
Jun Lu
Sheng-Li Tan
+ PDF Chat A note on the variety of plane curves with nodes and cusps 1989 Pyung-Lyun Kang
+ The local-global principle for integral points on stacky curves 2022 Manjul Bhargava
Bjorn Poonen
+ PDF Chat Uniqueness theorems for parametrized algebraic curves 1994 Peter Hall
+ Gonality of the modular curve 𝑋₀(𝑁) 2023 Filip Najman
Petar Orlić
+ PDF Chat Holomorphic motions and polynomial hulls 1991 Zbigniew Słodkowski