Towards objective and systematic evaluation of bias in artificial intelligence for medical imaging

Type: Article

Publication Date: 2024-06-28

Citations: 2

DOI: https://doi.org/10.1093/jamia/ocae165

Locations

  • Journal of the American Medical Informatics Association - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View

Similar Works

Action Title Year Authors
+ Towards objective and systematic evaluation of bias in medical imaging AI 2023 Emma A. M. Stanley
Raissa Souza
Anthony Winder
Vedant Gulve
Kimberly Amador
Matthias Wilms
Nils D. Forkert
+ No Fair Lunch: A Causal Perspective on Dataset Bias in Machine Learning for Medical Imaging 2023 Charles Jones
Daniel C. Castro
Fabio De Sousa Ribeiro
Ozan Oktay
Melissa D. McCradden
Ben Glocker
+ Navigating Fairness in Radiology AI: Concepts, Consequences,and Crucial Considerations 2023 Vasantha Kumar Venugopal
Abhishek Gupta
Rohit Takhar
Charlene Liew Jin Yee
Catherine Jones
Gilberto Szarf
+ The Role of Subgroup Separability in Group-Fair Medical Image Classification 2023 Charles Jones
Mélanie Roschewitz
Ben Glocker
+ PDF Chat Bias Assessment and Data Drift Detection in Medical Image Analysis: A Survey 2024 Andrea Prenner
Bernhard Kainz
+ Transparency of deep neural networks for medical image analysis: A review of interpretability methods 2021 Zohaib Salahuddin
Henry C. Woodruff
Avishek Chatterjee
Philippe Lambin
+ Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods 2021 Zohaib Salahuddin
Henry C. Woodruff
Avishek Chatterjee
Philippe Lambin
+ A Review of Causality for Learning Algorithms in Medical Image Analysis 2022 Athanasios Vlontzos
Daniel Rueckert
Bernhard Kainz
+ PDF Chat Evaluating the Fairness of Neural Collapse in Medical Image Classification 2024 Kaouther Mouheb
Marawan Elbatel
Stefan Klein
Esther E. Bron
+ PDF Chat Demographic Bias of Expert-Level Vision-Language Foundation Models in Medical Imaging 2024 Yuzhe Yang
Yujia Liu
Xin Liu
Avanti Gulhane
Domenico Mastrodicasa
Wei Wu
Edward Jay Wang
Dushyant W Sahani
Shwetak Patel
+ Debiasing Counterfactuals In the Presence of Spurious Correlations 2023 Amar Kumar
Nima Fathi
Raghav Mehta
Brennan Nichyporuk
Jean-Pierre Falet
Sotirios A. Tsaftaris
Tal Arbel
+ PDF Chat A Review of Causality for Learning Algorithms in Medical Image Analysis 2022 Athanasios Vlontzos
Daniel Rueckert
Bernhard Kainz
+ MEDFAIR: Benchmarking Fairness for Medical Imaging 2022 Yongshuo Zong
Yongxin Yang
Timothy M. Hospedales
+ Medical Image Debiasing by Learning Adaptive Agreement from a Biased Council 2024 Luyang Luo
Xin Huang
Minghao Wang
Zhuoyue Wan
Hao Chen
+ PDF Chat Reconsidering Conclusions of Bias Assessment in Medical Imaging Foundation Models 2023 Akshay Chaudhari
Christian Bluethgen
David Ouyang
+ Risk of Bias in Chest Radiography Deep Learning Foundation Models 2023 Ben Glocker
Charles Jones
Mélanie Roschewitz
Stefan Winzeck
+ PDF Chat On Biases in a UK Biobank-based Retinal Image Classification Model 2024 Anissa Alloula
Rima Mustafa
Daniel R. McGowan
Bartłomiej W. Papież
+ PDF Chat Learning Unbiased Image Segmentation: A Case Study with Plain Knee Radiographs 2023 Nickolas Littlefield
Johannes F. Plate
Kurt R. Weiss
Ines Lohse
Avani Chhabra
Ismaeel A. Siddiqui
Zoe Menezes
George Mastorakos
Sakshi Mehul Thakar
Mehrnaz Abedian
+ Learning Unbiased Image Segmentation: A Case Study with Plain Knee Radiographs 2023 Nickolas Littlefield
Johannes F. Plate
Kurt R. Weiss
Ines Lohse
Avani Chhabra
Ismaeel A. Siddiqui
Zoe Menezes
George Mastorakos
Sakshi Mehul Thakar
Mehrnaz Abedian
+ PDF Chat AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias 2024 Sribala Vidyadhari Chinta
Zichong Wang
Xingyu Zhang
Thang Doan Viet
Ayesha Kashif
Monique Antoinette Smith
Wenbin Zhang

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (10)

Action Title Year Authors
+ A Log-Euclidean Framework for Statistics on Diffeomorphisms 2006 Vincent Arsigny
Olivier Commowick
Xavier Pennec
Nicholas Ayache
+ Morpho-MNIST: Quantitative Assessment and Diagnostics for Representation Learning 2018 Daniel C. Castro
Jeremy Tan
Bernhard Kainz
Ender Konukoğlu
Ben Glocker
+ Representation Learning with Statistical Independence to Mitigate Bias 2021 Ehsan Adeli
Qingyu Zhao
Adolf Pfefferbaum
Edith V. Sullivan
Li Fei-Fei
Juan Carlos Niebles
Kilian M. Pohl
+ PDF Chat Fairness in Cardiac MR Image Analysis: An Investigation of Bias Due to Data Imbalance in Deep Learning Based Segmentation 2021 Esther Puyol‐Antón
Bram Ruijsink
Stefan K. Piechnik
Stefan Neubauer
Steffen E. Petersen
Reza Razavi
Andrew P. King
+ PDF Chat AI recognition of patient race in medical imaging: a modelling study 2022 Judy Wawira Gichoya
Imon Banerjee
Ananth Reddy Bhimireddy
John L. Burns
Leo Anthony Celi
Li-Ching Chen
Ramón Correa
Natalie Dullerud
Marzyeh Ghassemi
Shih-Cheng Huang
+ PDF Chat Disparities in dermatology AI performance on a diverse, curated clinical image set 2022 Roxana Daneshjou
Kailas Vodrahalli
Roberto A. Novoa
Melissa Jenkins
Weixin Liang
Veronica Rotemberg
Justin Ko
Susan M. Swetter
Elizabeth E. Bailey
Olivier Gevaert
+ PDF Chat FairPrune: Achieving Fairness Through Pruning for Dermatological Disease Diagnosis 2022 Yawen Wu
Dewen Zeng
Xiaowei Xu
Yiyu Shi
Jingtong Hu
+ PDF Chat A Study of Demographic Bias in CNN-Based Brain MR Segmentation 2022 Stefanos Ioannou
Hana Chockler
Alexander Hammers
Andrew P. King
+ PDF Chat Detecting shortcut learning for fair medical AI using shortcut testing 2023 Alexander Brown
Nenad Tomašev
Jan Freyberg
Yuan Liu
Alan Karthikesalingam
Jessica Schrouff
+ PDF Chat (Predictable) performance bias in unsupervised anomaly detection 2024 Felix Meissen
Svenja Breuer
Moritz Knolle
Alena Buyx
Ruth Müller
Georgios Kaissis
Benedikt Wiestler
Daniel Rückert