Global well posedness and ergodic results in regular Sobolev spaces for the nonlinear Schr\"odinger equation with multiplicative noise and arbitrary power of the nonlinearity

Type: Preprint

Publication Date: 2024-06-27

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2406.19214

Abstract

We consider the nonlinear Schr\"odinger equation on the $d$-dimensional torus $\mathbb T^d$, with the nonlinearity of polynomial type $|u|^{2\sigma}u$. For any $\sigma \in \mathbb N$ and $s>\frac d2$ we prove that adding to this equation a suitable stochastic forcing term there exists a unique global solution for any initial data in $H^s(\mathbb T^d)$. The effect of the noise is to prevent blow-up in finite time, differently from the deterministic setting. Moreover we prove existence of invariant measures and their uniqueness under more restrictive assumptions on the noise term.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Almost global existence for some nonlinear Schr{ö}dinger equations on $\mathbb{T}^d$ in low regularity 2022 Joackim Bernier
Benoît Grébert
+ Global well posedness and ergodic results in regular Sobolev spaces for the nonlinear Schrödinger equation with multiplicative noise and arbitrary power of the nonlinearity 2025 Zdzisław Brzeźniak
Benedetta Ferrario
Mario Maurelli
Margherita Zanella
+ PDF Chat Global well-posedness of the energy-critical stochastic nonlinear Schr\"odinger equation on the three-dimensional torus 2024 Guopeng Li
Mamoru Okamoto
Liying Tao
+ PDF Chat Probabilistic global-wellposedness for the energy-supercritical Schr\"odinger equations on compact manifolds 2025 Seynabou Gueye
Filone G. Longmou-Moffo
Mouhamadou Sy
+ Well-posedness of a parametrically forced nonlinear Schrödinger equation driven by translation-invariant noise 2022 Manuel V. Gnann
Rik W. S. Westdorp
+ Ergodic results for the stochastic nonlinear Schrödinger equation with large damping 2022 Zdzisław Brzeźniak
Benedetta Ferrario
Margherita Zanella
+ Stochastic nonlinear Schrödinger equation with almost space-time white noise 2018 Justin Forlano
Tadahiro Oh
Yuzhao Wang
+ Almost global existence for some nonlinear Schrödinger equations on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>𝕋</mml:mi> <mml:mi>d</mml:mi> </mml:msup></mml:math> in low regularity 2025 Joackim Bernier
Benoît Grébert
+ Stochastic nonlinear Schr\"odinger equations on tori 2018 Kelvin Cheung
Răzvan Moşincat
+ On the lifespan of solutions and control of high Sobolev norms for the completely resonant NLS on tori 2023 Roberto Feola
Jessica Elisa Massetti
+ Stochastic nonlinear Schrödinger equations on tori 2018 Kelvin Cheung
Răzvan Moşincat
+ PDF Chat Stochastic Nonlinear Schrödinger Equations Driven by a Fractional Noise. Well-Posedness, Large Deviations and Support 2007 Éric Gautier
+ Probabilistic local well-posedness for the Schrödinger equation posed for the Grushin Laplacian 2021 Louise Gassot
Mickaël Latocca
+ Averaging for resonant weakly nonlinear stochastic Schr\"odinger equations 2013 Sergei Kuksin
Alberto Maiocchi
+ PDF Chat Probabilistic well-posedeness for the nonlinear Schr\"odinger equation on the $2d$ sphere I: positive regularities 2024 Nicolas Burq
Nicolas Camps
Chenmin Sun
Nikolay Tzvetkov
+ Almost sure global well-posedness for the energy supercritical Schrödinger equations 2019 Mouhamadou Sy
+ PDF Chat STOCHASTIC NONLINEAR SCHRÖDINGER EQUATION WITH ALMOST SPACE–TIME WHITE NOISE 2019 Justin Forlano
Tadahiro Oh
Yuzhao Wang
+ PDF Chat Probabilistic local well-posedness for the Schr{\"o}dinger equation posed for the Grushin Laplacian 2021 Louise Gassot
Mickaël Latocca
+ A nonlinear Schr{ö}dinger equation with fractional noise 2020 Aurélien Deya
Nicolas Schaeffer
Laurent Thomann
+ PDF Chat Resonant averaging for small-amplitude solutions of stochastic nonlinear Schrödinger equations 2017 Sergei Kuksin
Alberto Maiocchi

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors