Singular multipliers on multiscale Zygmund sets

Type: Preprint

Publication Date: 2024-06-25

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2406.17521

Abstract

Given an Orlicz space $ L^2 \subseteq X \subseteq L^1$ on $[0,1]$, with submultiplicative Young function ${\mathrm{Y}_X}$, we fully characterize the closed null sets $\Xi$ of the real line with the property that H\"ormander-Mihlin or Marcinkiewicz multiplier operators $\mathrm{T}_m$ with singularities on $\Xi$ obey weak-type endpoint modular bounds on $X$ of the type \[ \left|\left\{x\in \mathbb R : |\mathrm{T}_m f(x)| >\lambda\right\}\right| \leq C \int_{\mathbb R} \mathrm{Y}_X \left(\frac{|f|}{\lambda}\right), \qquad \forall \lambda>0. \] These sets $\Xi$ are exactly those enjoying a scale invariant version of Zygmund's $(L\sqrt{\log L},{L^2})$ improving inequality with $X$ in place of the former space, which is termed multiscale Zygmund property. Our methods actually yield sparse and quantitative weighted estimates for the Fourier multipliers $\mathrm{T}_m$ and for the corresponding square functions. In particular, our framework covers the case of singular sets $\Xi$ of finite lacunary order and thus leads to modular and quantitative weighted versions of the classical endpoint theorems of Tao and Wright for Marcinkiewicz multipliers. Moreover, we obtain a pointwise sparse bound for the Marcinkiewicz square function answering a recent conjecture of Lerner. On the other hand, examples of non-lacunary sets enjoying the multiscale Zygmund property for each $X=L^p$, $1<p\leq 2$ are also covered. The main new ingredient in the proofs is a multi-frequency, multi-scale projection lemma based on Gabor expansion, and possessing independent interest.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Endpoint sparse domination for classes of multiplier transformations 2022 David Beltrán
Joris Roos
Andreas Seeger
+ Wavelet multipliers on 𝐿^{𝑝}(ℝⁿ) 2007 Yu Liu
Alip Mohammed
M. W. Wong
+ Subdyadic square functions and applications to weighted harmonic analysis 2016 David Beltran
Jonathan Bennett
+ Weak type estimates for cone multipliers on 𝐻^{𝑝} spaces, 𝑝&lt;1 2000 Sunggeum Hong
+ Quantitative weighted estimates for the Littlewood-Paley square function and Marcinkiewicz multipliers 2018 Andrei K. Lerner
+ Quantitative weighted estimates for the Littlewood-Paley square function and Marcinkiewicz multipliers 2018 Andrei K. Lerner
+ PDF Chat Quantitative weighted estimates for the Littlewood–Paley square function and Marcinkiewicz multipliers 2019 Andrei K. Lerner
+ Endpoint sparse bounds for Walsh-Fourier multipliers of Marcinkiewicz type 2018 Amalia Culiuc
Francesco Di Plinio
Michael T. Lacey
Yumeng Ou
+ Asymptotic behavior of 𝐿^{𝑝} estimates for a class of multipliers with homogeneous unimodular symbols 2022 Aleksandar Bulj
Vjekoslav Kovač
+ PDF Chat Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets 1981 Peter Sjögren
Per Sjölin
+ PDF Chat On the continuity of Fourier multipliers on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>W</mml:mi></mml:mrow><mml:mrow><mml:mo>˙</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mi>l</mml:mi><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo stretchy="true">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi… 2022 Eduard Curcă
+ Directional square functions and a sharp Meyer lemma 2019 Francesco Di Plinio
Ioannis Parissis
+ A Cotlar Type Maximal Function Associated With Fourier Multipliers 2019 Rajula Srivastava
+ A Cotlar Type Maximal Function Associated With Fourier Multipliers 2019 Rajula Srivastava
+ Directional square functions and a sharp Meyer lemma 2019 Francesco Di Plinio
Ioannis Parissis
+ Endpoint estimates for higher order Marcinkiewicz multipliers 2024 Odysseas Bakas
Valentina Ciccone
Ioannis Parissis
Marco Vitturi
+ Optimal exponents in weighted estimates without examples 2013 Teresa Luque
Carlos Pérez
Ezequiel Rela
+ Optimal exponents in weighted estimates without examples 2013 Teresa Luque
Carlos Pérez
Ezequiel Rela
+ Endpoint estimates for higher order Marcinkiewicz multipliers 2024 Odysseas Bakas
Valentina Ciccone
Ioannis Parissis
Marco Vitturi
+ Sharp <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math> estimates for discrete second-order Riesz transforms 2014 Komla Domelevo
Stefanie Petermichl

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors