Global well-posedness for the derivative nonlinear Schrödinger equation in $L^{2}(\R)$

Type: Article

Publication Date: 2024-06-26

Citations: 0

DOI: https://doi.org/10.4171/jems/1490

Locations

  • Journal of the European Mathematical Society - View

Similar Works

Action Title Year Authors
+ PDF Chat Global well-posedness for the derivative nonlinear Schr\"odinger equation 2022 Hajer Bahouri
Galina Perelman
+ PDF Chat Global well-posedness on the derivative nonlinear Schrödinger equation 2015 Yifei Wu
+ Global Well-Posedness on a generalized derivative nonlinear Schr\"odinger equation 2016 Noriyoshi Fukaya
Masayuki Hayashi
Takahisa Inui
+ Global Well-posedness for the Derivative Nonlinear Schrödinger Equation Through Inverse Scattering 2017 Jiaqi Liu
+ Global Solvability of the Derivative Nonlinear Schrodinger Equation 1989 Jyh-Hao Lee
+ Global well-posedness for the derivative nonlinear Schr\"{o}dinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ PDF Chat Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$ 2016 Zihua Guo
Yifei Wu
+ Global well-posedness of a 2D nonlinear Schrdinger equation 2003 Zhang Zhi
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^2(\mathbb{R})$ 2022 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ Well-posedness of the one-dimensional derivative nonlinear Schrödinger equation 2018 Răzvan Moşincat
+ Global well-posedness for the derivative nonlinear Schrödinger equation 2022 Hajer Bahouri
Galina Perelman
+ Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space 2013 Yifei Wu
+ Local Well-Posedness for the Derivative Nonlinear Schrödinger Equation in Besov spaces 2016 Cai Constantin Cloos
+ Global well-posedness and scattering for a class of nonlinear Dunkl–Schrödinger equations 2009 Hatem Mejjaolı
+ Global well-posedness for the derivative nonlinear Schrödinger equation 2020 Hajer Bahouri
Galina Perelman
+ Local well-posedness for the nonlinear Schr\"odinger equation in modulation spaces $M_{p,q}^{s}(\mathbb{R}^d)$ 2016 Leonid Chaichenets
Dirk Hundertmark
Peer Christian Kunstmann
Nikolaos Pattakos
+ Global well-posedness for Schrödinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terry Tao
+ Global well-posedness for the higher order non-linear Schrödinger equation in modulation spaces 2024 Xavier Carvajal
Pedro Gamboa
Rui Santos
+ Well-Posedness for the Coupled Schr?dinger Equations with Derivative 2024 巧欣 李

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors