Bounds for the Regularity Radius of Delone Sets

Type: Article

Publication Date: 2024-06-22

Citations: 1

DOI: https://doi.org/10.1007/s00454-024-00666-6

Abstract

Abstract Delone sets are discrete point sets X in $${\mathbb {R}}^d$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mi>d</mml:mi></mml:msup></mml:math> characterized by parameters ( r , R ), where (usually) 2 r is the smallest inter-point distance of X , and R is the radius of a largest “empty ball” that can be inserted into the interstices of X . The regularity radius $${\hat{\rho }}_d$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mover><mml:mi>ρ</mml:mi><mml:mo>^</mml:mo></mml:mover><mml:mi>d</mml:mi></mml:msub></mml:math> is defined as the smallest positive number $$\rho $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ρ</mml:mi></mml:math> such that each Delone set with congruent clusters of radius $$\rho $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ρ</mml:mi></mml:math> is a regular system, that is, a point orbit under a crystallographic group. We discuss two conjectures on the growth behavior of the regularity radius. Our “Weak Conjecture” states that $${\hat{\rho }}_{d}={\textrm{O}(d^2\log _2 d)}R$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mover><mml:mi>ρ</mml:mi><mml:mo>^</mml:mo></mml:mover><mml:mi>d</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mtext>O</mml:mtext><mml:mo>(</mml:mo><mml:msup><mml:mi>d</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:msub><mml:mo>log</mml:mo><mml:mn>2</mml:mn></mml:msub><mml:mi>d</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math> as $$d\rightarrow \infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi><mml:mo>→</mml:mo><mml:mi>∞</mml:mi></mml:mrow></mml:math> , independent of r . This is verified in the paper for two important subfamilies of Delone sets: those with full-dimensional clusters of radius 2 r and those with full-dimensional sets of d -reachable points. We also offer support for the plausibility of a “Strong Conjecture”, stating that $${\hat{\rho }}_{d}={\textrm{O}(d\log _2 d)}R$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mover><mml:mi>ρ</mml:mi><mml:mo>^</mml:mo></mml:mover><mml:mi>d</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mtext>O</mml:mtext><mml:mo>(</mml:mo><mml:mi>d</mml:mi><mml:msub><mml:mo>log</mml:mo><mml:mn>2</mml:mn></mml:msub><mml:mi>d</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math> as $$d\rightarrow \infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi><mml:mo>→</mml:mo><mml:mi>∞</mml:mi></mml:mrow></mml:math> , independent of r .

Locations

  • Discrete & Computational Geometry - View - PDF

Similar Works

Action Title Year Authors
+ Bounds for the Regularity Radius of Delone Sets 2023 Nikolay Dolbilin
Alexey Garber
Egon Schulte
Marjorie Senechal
+ PDF Chat On the origin of crystallinity: a lower bound for the regularity radius of Delone sets 2018 Igor A. Baburin
Mikhail Bouniaev
Nikolay Dolbilin
Nikolay Yu. Erokhovets
Alexey Garber
Sergey V. Krivovichev
Egon Schulte
+ On the regularity radius of Delone sets in $\mathbb{R}^3$ 2019 Nikolay Dolbilin
Alexey Garber
Undine Leopold
Egon Schulte
+ PDF Chat On the Regularity Radius of Delone Sets in $${\mathbb {R}}^3$$ 2021 Nikolay Dolbilin
Alexey Garber
Undine Leopold
Egon Schulte
Marjorie Senechal
+ Local groups in Delone sets in the Euclidean space 2022 Nikolay Dolbilin
Михаил Иванович Штогрин
+ Local Groups in Delone Sets 2020 Nikolay Dolbilin
+ PDF Chat On rectifiability of Delone sets in intermediate regularity 2024 Irene Inoquio-Renteria
Rodolfo Viera
+ PDF Chat Local Complexity of Delone Sets and Crystallinity 2002 Jeffrey C. Lagarias
P. A. B. Pleasants
+ Local Complexity of Delone Sets and Crystallinity 2001 J. C. Lagarias
P. A. B. Pleasants
+ PDF Chat On the uniformity and size of microsets 2024 Richárd Balka
Vilma Orgoványi
Alex Rutar
+ Delone sets in ℝ3: Regularity Conditions 2020 Н. П. Долбилин
+ PDF Chat On some properties of three-dimensional minimal sets in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>ℝ</mml:mi></mml:mrow> <mml:mn>4</mml:mn> </mml:msup></mml:math> 2014 Tien Duc Luu
+ PDF Chat A Mattila–Sjölin theorem for simplices in low dimensions 2024 Eyvindur A. Palsson
Francisco Romero Acosta
+ On necklaces inside thin subsets of ${\Bbb R}^d$ 2014 Allan Greenleaf
Alex Iosevich
Malabika Pramanik
+ On necklaces inside thin subsets of ${\Bbb R}^d$ 2014 Allan Greenleaf
Alex Iosevich
Malabika Pramanik
+ Repetitive Delone Sets and Quasicrystals 1999 J. C. Lagarias
P. A. B. Pleasants
+ PDF Chat Repetitive Delone sets and quasicrystals 2003 Jeffrey C. Lagarias
P. A. B. Pleasants
+ Cube packings, second moment and holes 2005 Mathieu Dutour Sikirić
Yoshiaki Itoh
Alexei Poyarkov
+ The Regular Polyhedrons 2023
+ The Regular Polyhedrons 2018

Works That Cite This (0)

Action Title Year Authors