Precise asymptotics for the spectral radius of a large random matrix

Type: Article

Publication Date: 2024-06-01

Citations: 0

DOI: https://doi.org/10.1063/5.0209705

Abstract

We consider the spectral radius of a large random matrix X with independent, identically distributed entries. We show that its typical size is given by a precise three-term asymptotics with an optimal error term beyond the radius of the celebrated circular law. The coefficients in this asymptotics are universal but they differ from a similar asymptotics recently proved for the rightmost eigenvalue of X in Cipolloni et al., Ann. Probab. 51(6), 2192–2242 (2023). To access the more complicated spectral radius, we need to establish a new decorrelation mechanism for the low-lying singular values of X − z for different complex shift parameters z using the Dyson Brownian Motion.

Locations

  • Journal of Mathematical Physics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Precise asymptotics for the spectral radius of a large random matrix 2022 Giorgio Cipolloni
László Erdős
Yuanyuan Xu
+ Fluctuations in the spectrum of non-Hermitian i.i.d. matrices 2022 Giorgio Cipolloni
+ PDF Chat A revisit of the circular law 2024 Zhidong Bai
Jiang Hu
+ Exponential growth of random determinants beyond invariance 2021 Gérard Ben Arous
Paul Bourgade
Benjamin McKenna
+ PDF Chat Central Limit Theorem for Linear Eigenvalue Statistics of <scp>Non‐Hermitian</scp> Random Matrices 2021 Giorgio Cipolloni
László Erdős
Dominik Schröder
+ PDF Chat Spectral radius of random matrices with independent entries 2021 Johannes Alt
László Erdős
Torben Krüger
+ Spectral radius of random matrices with independent entries 2019 Johannes Alt
László Erdős
Torben Krüger
+ Exponential growth of random determinants beyond invariance 2021 Gérard Ben Arous
Paul Bourgade
Benjamin McKenna
+ METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW 2008 Zhidong Bai
+ PDF Chat Spectral Analysis of Large Dimensional Random Matrices 2009 Zhidong Bai
Jack W. Silverstein
+ PDF Chat Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices 2021 Yiting Li
Kevin Schnelli
Yuanyuan Xu
+ PDF Chat Local inhomogeneous circular law 2018 Johannes Alt
László Erdős
Torben Krüger
+ PDF Chat Eigenvalue fluctuations of 1-dimensional random Schrödinger operators 2024 Takuto Mashiko
Yuma Marui
Naoki Maruyama
Fumihiko Nakano
+ PDF Chat Gaussian Regularization of the Pseudospectrum and Davies’ Conjecture 2021 Jess Banks
Archit Kulkarni
Satyaki Mukherjee
Nikhil Srivastava
+ PDF Chat RANDOM MATRICES: THE CIRCULAR LAW 2008 Terence Tao
Van Vu
+ PDF Chat Extremal Eigenvalues of Random Kernel Matrices with Polynomial Scaling 2024 David Kogan
Sagnik Nandy
Jiaoyang Huang
+ Random Matrix Theory: basics and spectral asymptotics 2010 Leonid V. Bogachev
+ Introduction to Random Matrix Theory 2016 Igor Smolyarenko
+ Random Matrices: The circular Law 2007 Terence Tao
Van Vu
+ A note on the convergence rate of the spectral distributions of large random matrices 1997 Zhidong Bai
Miao Bai-qi
Jhishen Tsay

Works That Cite This (0)

Action Title Year Authors