Non-Hermitian photonic spin Hall insulators

Type: Article

Publication Date: 2024-06-20

Citations: 0

DOI: https://doi.org/10.1103/physrevb.109.l241406

Abstract

Photonic platforms invariant under parity ($\mathcal{P}$), time-reversal ($\mathcal{T}$), and duality ($\mathcal{D}$) can support topological phases analogous to those found in time-reversal invariant ${\mathbb{Z}}_{2}$ electronic systems with conserved spin. Here, we demonstrate the resilience of the underlying spin Chern phases against non-Hermitian effects, notably material dissipation. We identify that non-Hermitian, $\mathcal{P}\mathcal{D}$-symmetric, and reciprocal photonic insulators fall into two topologically distinct classes. Our analysis focuses on the topology of a $\mathcal{P}\mathcal{D}$-symmetric and reciprocal parallel-plate waveguide (PPW). We discover a critical loss level in the plates that marks a topological phase transition. The Hamiltonian of the $\mathcal{P}\mathcal{T}\mathcal{D}$-symmetric system is found to consist of an infinite direct sum of Kane-Mele-type Hamiltonians with a common band gap. This structure leads to the topological charge of the waveguide being an ill-defined sum of integers due to the particle-hole symmetry. Each component of this series corresponds to a spin-polarized edge state. Our findings present a unique instance of a topological photonic system that can host an infinite number of edge states in its band gap.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Non-Hermitian Photonic Spin Hall Insulators 2023 Rodrigo P. Câmara
Tatiana G. Rappoport
MĂĄrio G. Silveirinha
+ PDF Chat Topological Metamaterials 2023 Xiang Ni
Simon Yves
Alex Krasnok
Andrea AlĂš
+ Topological photonics 2019 Tomoki Ozawa
Hannah M. Price
A. Amo
Nathan Goldman
Mohammad Hafezi
Ling LĂź
Mikael C. Rechtsman
David Schuster
Jonathan Simon
Oded Zilberberg
+ PDF Chat Topological Photonic Phase in Chiral Hyperbolic Metamaterials 2015 Wenlong Gao
Mark Lawrence
Biao Yang
Liu Fu
Fengzhou Fang
BenjĂĄmin BĂŠri
Jensen Li
Shuang Zhang
+ PDF Chat Spin-dependent gain and loss in photonic quantum spin Hall systems 2023 Tian-Rui Liu
Kai Bai
Jia-Zheng Li
Liang Fang
Duanduan Wan
Meng Xiao
+ Spin-dependent gain and loss in photonic quantum spin Hall systems 2023 Tian-Rui Liu
Kai Bai
Jia-Zheng Li
Liang Fang
Duanduan Wan
Meng Xiao
+ PDF Chat Symmetry-Based Classification of Chern Phases in Honeycomb Photonic Crystals 2024 Rodrigo P. Câmara
Tatiana G. Rappoport
MĂĄrio G. Silveirinha
+ $Z_2$ Topological Index for Homogeneous Continuous Photonic Materials 2016 MĂĄrio G. Silveirinha
+ PDF Chat Topologically protected elastic waves in phononic metamaterials 2015 S. Hossein Mousavi
Alexander B. Khanikaev
Zheng Wang
+ PDF Chat Programmable lattices for non-Abelian topological photonics and braiding 2024 Gyunghun Kim
Jensen Li
Xian‐Ji Piao
Namkyoo Park
Sunkyu Yu
+ Anomalous nonreciprocal topological networks: stronger than Chern insulators 2021 Zhe Zhang
Pierre Delplace
Romain Fleury
+ Photonic analogue of quantum spin Hall effect 2014 Cheng He
Xiaochen Sun
Xiao-Ping Liu
Ming‐Hui Lu
Yulin Chen
Feng Liang
Yan‐Feng Chen
+ Topological Monomodes in non-Hermitian Systems 2023 E. Slootman
W. Cherifi
L. Eek
R. Arouca
Emil J. Bergholtz
M. Bourennane
C. Morais Smith
+ Photonic Higher-Order Topological States Induced by Long Range Interactions 2019 Mengyao Li
Dmitry V. Zhirihin
Dmitry Filonov
Xiang Ni
Alexey Slobozhanyuk
Andrea AlĂš
Alexander B. Khanikaev
+ Topological Metamaterials 2022 Xiang Ni
Simon Yves
Alex Krasnok
Andrea AlĂš
+ PDF Chat Topological phases of photonic crystals under crystalline symmetries 2023 Sachin Vaidya
Ali Ghorashi
Thomas Christensen
Mikael C. Rechtsman
Wladimir A. Benalcazar
+ Observation of non-Hermitian topology and its bulk-edge correspondence 2019 Ananya Ghatak
Martin Brandenbourger
Jasper van Wezel
Corentin Coulais
+ PDF Chat Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial 2020 Ananya Ghatak
Martin Brandenbourger
Jasper van Wezel
Corentin Coulais
+ Topological Phases of Photonic Crystals under Crystalline Symmetries 2023 Sachin Vaidya
Ali Ghorashi
Thomas Christensen
Mikael C. Rechtsman
Wladimir A. Benalcazar
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>topological index for continuous photonic materials 2016 MĂĄrio G. Silveirinha

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (41)

Action Title Year Authors
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>classification of quantum spin Hall systems: An approach using time-reversal invariance 2009 Rahul Roy
+ Quantum spin Hall effect of light 2015 Konstantin Y. Bliokh
Daria A. Smirnova
Franco Nori
+ PDF Chat Topological Photonic Phase in Chiral Hyperbolic Metamaterials 2015 Wenlong Gao
Mark Lawrence
Biao Yang
Liu Fu
Fengzhou Fang
BenjĂĄmin BĂŠri
Jensen Li
Shuang Zhang
+ PDF Chat Photonic Floquet topological insulators 2013 Mikael C. Rechtsman
Julia M. Zeuner
Yonatan Plotnik
Yaakov Lumer
Daniel K. Podolsky
Felix Dreisow
Stefan Nolte
Mordechai Segev
Alexander Szameit
+ PDF Chat Time-asymmetric quantum-state-exchange mechanism 2013 Ido Gilary
Alexei A. Mailybaev
Nimrod Moiseyev
+ PDF Chat Breakdown of adiabatic transfer of light in waveguides in the presence of absorption 2013 Eva-Maria Graefe
Alexei A. Mailybaev
Nimrod Moiseyev
+ PDF Chat Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry 2008 F. D. M. Haldane
S. Raghu
+ PDF Chat Topological invariance and global Berry phase in non-Hermitian systems 2013 Shi‐Dong Liang
Guang-Yao Huang
+ PDF Chat Edge states and topological phases in non-Hermitian systems 2011 Kenta Esaki
Masatoshi Sato
Kazuki Hasebe
Mahito Kohmoto
+ PDF Chat Analogs of quantum-Hall-effect edge states in photonic crystals 2008 S. Raghu
F. D. M. Haldane