Improving Behrend's construction: Sets without arithmetic progressions in integers and over finite fields

Type: Preprint

Publication Date: 2024-06-18

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2406.12290

Abstract

We prove new lower bounds on the maximum size of subsets $A\subseteq \{1,\dots,N\}$ or $A\subseteq \mathbb{F}_p^n$ not containing three-term arithmetic progressions. In the setting of $\{1,\dots,N\}$, this is the first improvement upon a classical construction of Behrend from 1946 beyond lower-order factors (in particular, it is the first quasipolynomial improvement). In the setting of $\mathbb{F}_p^n$ for a fixed prime $p$ and large $n$, we prove a lower bound of $(cp)^n$ for some absolute constant $c>1/2$ (for $c = 1/2$, such a bound can be obtained via classical constructions from the 1940s, but improving upon this has been a well-known open problem).

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ New lower bounds for three-term progression free sets in $\mathbb{F}_p^n$ 2024 Christian Elsholtz
Laura Proske
Lisa Sauermann
+ PDF Chat New lower bounds for $r_3(N)$ 2024 Zach Hunter
+ PDF Chat An improved construction of progression-free sets 2011 Michael Elkin
+ An Improved Construction of Progression-Free Sets 2008 Michael Elkin
+ Large Subsets of $\mathbb{Z}_m^n$ without Arithmetic Progressions 2022 Christian Elsholtz
Benjamin Klahn
Gabriel F. Lipnik
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ A note on the large progression-free sets in Z_q^n 2016 Hongze Li
+ Rank counting and maximum subsets of $\mathbb{F}^n_q$ containing no right angles 2016 Gennian Ge
Chong Shangguan
+ Effective Bounds for Restricted $3$-Arithmetic Progressions in $\mathbb{F}_p^n$ 2023 Amey Bhangale
Subhash Khot
Dor Minzer
+ The Kelley--Meka bounds for sets free of three-term arithmetic progressions 2023 Thomas F. Bloom
Olof Sisask
+ An improvement to the Kelley-Meka bounds on three-term arithmetic progressions 2023 Thomas F. Bloom
Olof Sisask
+ An improved construction of progression-free sets 2010 Michael Elkin
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 Gábor Hegedüs
+ PDF Chat More on maximal line-free sets in $\mathbb{F}_p^n$ 2024 Jakob FĂĽhrer
+ Asymptotic upper bounds on progression-free sets in $\mathbb{Z}_p^n$ 2016 Dion Gijswijt
+ On subsets of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msubsup><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msubsup></mml:math> containing no <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mi>k</mml:mi></mml:math>-term progressions 2010 Yuqian Lin
Jason B. Wolf
+ PDF Chat Progression-free sets in $\mathbb{Z}_4^n$ are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
Péter Pál Pach
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
Péter Pál Pach

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors