Weak-Type (1,1) Inequality for Discrete Maximal Functions and Pointwise Ergodic Theorems Along Thin Arithmetic Sets

Type: Article

Publication Date: 2024-06-01

Citations: 0

DOI: https://doi.org/10.1007/s00041-024-10093-z

Abstract

Abstract We establish weak-type (1, 1) bounds for the maximal function associated with ergodic averaging operators modeled on a wide class of thin deterministic sets B . As a corollary we obtain the corresponding pointwise convergence result on $$L^1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:math> . This contributes yet another counterexample for the conjecture of Rosenblatt and Wierdl from 1991 asserting the failure of pointwise convergence on $$L^1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:math> of ergodic averages along arithmetic sets with zero Banach density. The second main result is a multiparameter pointwise ergodic theorem in the spirit of Dunford and Zygmund along B on $$L^p$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math> , $$p&gt;1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , which is derived by establishing uniform oscillation estimates and certain vector-valued maximal estimates.

Locations

  • Journal of Fourier Analysis and Applications - View - PDF

Similar Works

Action Title Year Authors
+ Weak-type (1,1) inequality for discrete maximal functions and pointwise ergodic theorems along thin arithmetic sets 2023 Leonidas Daskalakis
+ Weak type (1, 1) inequalities for discrete rough maximal functions 2013 Mariusz Mirek
+ Weak type (1, 1) inequalities for discrete rough maximal functions 2013 Mariusz Mirek
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>-estimates for discrete operators of Radon type: Maximal functions and vector-valued estimates 2018 Mariusz Mirek
Elias M. Stein
Bartosz Trojan
+ $\ell^p\big(\mathbb Z^d\big)$-estimates for discrete operators of Radon type: Maximal functions and vector-valued estimates 2015 Mariusz Mirek
Elias M. Stein
Bartosz Trojan
+ PDF Chat Weak type (1, 1) inequalities for discrete rough maximal functions 2015 Mariusz Mirek
+ PDF Chat Weighted weak type inequalities for the ergodic maximal function and the pointwise ergodic theorem 1987 A. de la Torre
F. J. Martín-Reyes
+ Pointwise Convergence for Subsequences of Weighted Averages 2009 Patrick LaVictoire
+ Pointwise Convergence for Subsequences of Weighted Averages 2009 Patrick LaVictoire
+ PDF Chat Ergodic theorems of weak mixing type 1976 Lee Jones
Michael Lin
+ Inequalities for the Ergodic Maximal Function and Convergence of the Averages in Weighted L p -Spaces 1986 F. J. Martín-Reyes
+ PDF Chat Weak type inequalities for the maximal ergodic function and the maximal ergodic Hilbert transform in weighted spaces 1984 E. Atencia
F. J. Martín-Reyes
+ PDF Chat Pointwise Convergence of Ergodic Averages Along Hardy Field Sequences 2024 Mary O’Keeffe
+ PDF Chat Noncommutative strong maximals and almost uniform convergence in several directions 2020 José M. Conde-Alonso
Adrián M. González-Pérez
Javier Parcet
+ Pointwise ergodic theorems for some thin subsets of primes 2018 Bartosz Trojan
+ $\ell^p(\mathbb{Z})$ -- boundedness of discrete maximal functions along thin subsets of primes and pointwise ergodic theorems 2014 Mariusz Mirek
+ Pointwise Convergence for Subsequences of Convolution Operators 2009 Patrick LaVictoire
+ $$\ell ^p({\mathbb {Z}})$$ ℓ p ( Z ) —Boundedness of discrete maximal functions along thin subsets of primes and pointwise ergodic theorems 2014 Mariusz Mirek
+ PDF Chat On the pointwise ergodic theorems in $L_{p}$ (1 1985 Richard Emilion
+ PDF Chat The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences 1985 Alexandra Bellow
Viktor Losert

Works That Cite This (0)

Action Title Year Authors