Type: Article
Publication Date: 2024-06-01
Citations: 0
DOI: https://doi.org/10.1007/s00041-024-10093-z
Abstract We establish weak-type (1, 1) bounds for the maximal function associated with ergodic averaging operators modeled on a wide class of thin deterministic sets B . As a corollary we obtain the corresponding pointwise convergence result on $$L^1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:math> . This contributes yet another counterexample for the conjecture of Rosenblatt and Wierdl from 1991 asserting the failure of pointwise convergence on $$L^1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:math> of ergodic averages along arithmetic sets with zero Banach density. The second main result is a multiparameter pointwise ergodic theorem in the spirit of Dunford and Zygmund along B on $$L^p$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math> , $$p>1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , which is derived by establishing uniform oscillation estimates and certain vector-valued maximal estimates.
Action | Title | Year | Authors |
---|