Semilinear damped wave equations on the Heisenberg group with initial data from Sobolev spaces of negative order

Type: Article

Publication Date: 2024-06-09

Citations: 0

DOI: https://doi.org/10.1007/s00028-024-00976-5

Abstract

Abstract In this paper, we focus on studying the Cauchy problem for semilinear damped wave equations involving the sub-Laplacian $$\mathcal {L}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>L</mml:mi> </mml:math> on the Heisenberg group $$\mathbb {H}^n$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:math> with power type nonlinearity $$|u|^p$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>u</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msup> </mml:math> and initial data taken from Sobolev spaces of negative order homogeneous Sobolev space $$\dot{H}^{-\gamma }_{\mathcal {L}}(\mathbb {H}^n), \gamma &gt;0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mover> <mml:mi>H</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>γ</mml:mi> </mml:mrow> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , on $$\mathbb {H}^n$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:math> . In particular, in the framework of Sobolev spaces of negative order, we prove that the critical exponent is the exponent $$p_{\text {crit}}(Q, \gamma )=1+\frac{4}{Q+2\gamma },$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mtext>crit</mml:mtext> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>4</mml:mn> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>γ</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> for $$\gamma \in (0, \frac{Q}{2})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mfrac> <mml:mi>Q</mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , where $$Q:=2n+2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> is the homogeneous dimension of $$\mathbb {H}^n$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:math> . More precisely, we establish A global-in-time existence of small data Sobolev solutions of lower regularity for $$p&gt;p_{\text {crit}}(Q, \gamma )$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:msub> <mml:mi>p</mml:mi> <mml:mtext>crit</mml:mtext> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> in the energy evolution space; A finite time blow-up of weak solutions for $$1&lt;p&lt;p_{\text {crit}}(Q, \gamma )$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>&lt;</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&lt;</mml:mo> <mml:msub> <mml:mi>p</mml:mi> <mml:mtext>crit</mml:mtext> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> under certain conditions on the initial data by using the test function method. Furthermore, to precisely characterize the blow-up time, we derive sharp upper bound and lower bound estimates for the lifespan in the subcritical case.

Locations

  • Journal of Evolution Equations - View - PDF

Similar Works

Action Title Year Authors
+ Semilinear damped wave equations on the Heisenberg group with initial data from Sobolev spaces of negative order 2024 Aparajita Dasgupta
Vishvesh Kumar
Shyam Swarup Mondal
Michael Ruzhansky
+ PDF Chat Semilinear damped wave equations with data from Sobolev spaces of negative order: the critical case in Euclidean setting and in the Heisenberg space 2024 Marcello D’Abbicco
+ PDF Chat Fractional semilinear damped wave equation on the Heisenberg group 2025 Aparajita Dasgupta
Shyam Swarup Mondal
Abhilash Tushir
+ PDF Chat On the critical exponent and sharp lifespan estimates for semilinear damped wave equations with data from Sobolev spaces of negative order 2023 Wenhui Chen
Michael Reissig
+ PDF Chat Blow-up result for semilinear damped wave equations with data from negative order Sobolev spaces: the critical case 2024 Vishvesh Kumar
Shyam Swarup Mondal
Michael Ruzhansky
Berikbol T. Torebek
+ Nonlinear damped wave equations for the sub-Laplacian on the Heisenberg group and for Rockland operators on graded Lie groups 2017 Michael Ruzhansky
Niyaz Tokmagambetov
+ Nonlinear damped wave equations for the sub-Laplacian on the Heisenberg group and for Rockland operators on graded Lie groups 2017 Michael Ruzhansky
Niyaz Tokmagambetov
+ Nonlinear damped wave equations for the sub-Laplacian on the Heisenberg group and for Rockland operators on graded Lie groups 2018 Michael Ruzhansky
Niyaz Tokmagambetov
+ PDF Chat Higher order hypoelliptic damped wave equations on graded Lie groups with data from negative order Sobolev spaces 2024 Aparajita Dasgupta
Vishvesh Kumar
Shyam Swarup Mondal
Michael Ruzhansky
+ PDF Chat A Global Existence Result for a Semilinear Wave Equation with Lower Order Terms on Compact Lie Groups 2022 Alessandro Palmieri
+ PDF Chat Blow-up of solution to semilinear wave equations with strong damping and scattering damping 2022 Sen Ming
Jiayi Du
Yeqin Su
Hui Xue
+ Critical regularity of nonlinearities in semilinear effectively damped wave models 2022 Abdelhamid Mohammed Djaouti
Michael Reissig
+ PDF Chat Blow-up for semilinear wave equations with time-dependent damping in an exterior domain 2020 Mohamed Jleli
Bessem Samet
+ On the critical exponent and sharp lifespan estimates for semilinear damped wave equations with data from Sobolev spaces of negative order 2021 Wenhui Chen
Michael Reissig
+ PDF Chat Blow-up of solutions to semilinear wave equations with a time-dependent strong damping 2022 Ahmad Z. Fino
Mohamed Ali Hamza
+ PDF Chat On the blow – up of solutions to semilinear damped wave equations with power nonlinearity in compact Lie groups 2021 Alessandro Palmieri
+ Critical exponent of Fujita-type for the semilinear damped wave equation on the Heisenberg group with power nonlinearity 2019 Vladimir Georgiev
Alessandro Palmieri
+ PDF Chat Damped wave equation with super critical nonlinearities 2004 Nakao Hayashi
Elena I. Kaikina
Pavel I. Naumkin
+ Cauchy problem of nonlinear Schrödinger equation with initial data in Sobolev space 𝑊^{𝑠,𝑝} for 𝑝&lt;2 2010 Yi Zhou
+ PDF Chat Partial Hölder continuity for nonlinear sub-elliptic systems with VMO-coefficients in the Heisenberg group 2016 Jialin Wang
Juan J. Manfredi

Works That Cite This (0)

Action Title Year Authors