Demonstration of two-dimensional connectivity for a scalable error-corrected ion-trap quantum processor architecture

Type: Preprint

Publication Date: 2024-06-04

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2406.02406

Abstract

A major hurdle for building a large-scale quantum computer is to scale up the number of qubits while maintaining connectivity between them. In trapped-ion devices, this connectivity can be provided by physically moving subregisters consisting of a few ions across the processor. The topology of the connectivity is given by the layout of the ion trap where one-dimensional and two-dimensional arrangements are possible. Here, we focus on an architecture based on a rectangular two-dimensional lattice, where each lattice site contains a subregister with a linear string of ions. We refer to this architecture as the Quantum Spring Array (QSA). Subregisters placed in neighboring lattice sites can be coupled by bringing the respective ion strings close to each other while avoiding merging them into a single trapping potential. Control of the separation of subregisters along one axis of the lattice, known as the axial direction, uses quasi-static voltages, while the second axis, the radial, requires control of radio frequency signals. In this work, we investigate key elements of the 2D lattice quantum computation architecture along both axes: We show that the coupling rate between neighboring lattice sites increases with the number of ions per site and the motion of the coupled system can be resilient to noise. The coherence of the coupling is assessed, and an entangled state of qubits in separate trapping regions along the radial axis is demonstrated. Moreover, we demonstrate control over radio frequency signals to adjust radial separation between strings, and thus tune their coupling rate. We further map the 2D lattice architecture to code primitives for fault-tolerant quantum error correction, providing a step towards a quantum processor architecture that is optimized for large-scale fault-tolerant operation.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Scaling and assigning resources on ion trap QCCD architectures 2024 Anabel Ovide
Daniele Cuomo
Carmen G. Almudéver
+ Scalable architecture for trapped-ion quantum computing using RF traps and dynamic optical potentials 2023 David Schwerdt
Lee Peleg
Yotam Shapira
N. Priel
Yanay Florshaim
Avram Gross
Ayelet Zalic
Gadi Afek
Nitzan Akerman
Ady Stern
+ PDF Chat Scalable Arrays of Micro-Penning Traps for Quantum Computing and Simulation 2020 Shreyans Jain
Joseba Alonso
M. Grau
Jonathan Home
+ PDF Chat Crosstalk Suppression for Fault-tolerant Quantum Error Correction with Trapped Ions 2021 Pedro Parrado-Rodríguez
Ciarán Ryan-Anderson
A. Bermúdez
Markus Müller
+ Demonstration of the QCCD trapped-ion quantum computer architecture 2020 Juan Miguel Rey Pino
Joan Dreiling
Caroline Figgatt
John Gaebler
Steven A. Moses
Michael S. Allman
Charles H. Baldwin
Michael Foss‐Feig
David Hayes
Karl Mayer
+ Co-Designing a Scalable Quantum Computer with Trapped Atomic Ions 2016 Kenton R. Brown
J. Kim
C. Monroe
+ PDF Chat A Race-Track Trapped-Ion Quantum Processor 2023 Steven A. Moses
Charles H. Baldwin
M. S. Allman
R. Ancona
L. Ascarrunz
C. H. W. Barnes
John P. Bartolotta
Bryce Bjork
P. Blanchard
Matthew J. Bohn
+ A Race Track Trapped-Ion Quantum Processor 2023 Steven A. Moses
Charles H. Baldwin
M. S. Allman
R. Ancona
L. Ascarrunz
C. H. W. Barnes
John P. Bartolotta
Bryce Bjork
P. Blanchard
Matthew J. Bohn
+ PDF Chat Architecting Noisy Intermediate-Scale Trapped Ion Quantum Computers 2020 Prakash Murali
Dripto M. Debroy
Kenneth R. Brown
Margaret Martonosi
+ PDF Chat Ion-Trap Chip Architecture Optimized for Implementation of Quantum Error-Correcting Code 2025 Jeonghoon Lee
Hyeongjun Jeon
Tae Hyun Kim
+ Architecting Noisy Intermediate-Scale Trapped Ion Quantum Computers 2020 Prakash Murali
Dripto M. Debroy
Kenneth R. Brown
Margaret Martonosi
+ Architecting Noisy Intermediate-Scale Trapped Ion Quantum Computers. 2020 Prakash Murali
Dripto M. Debroy
Kenneth R. Brown
Margaret Martonosi
+ PDF Chat A high-fidelity quantum matter-link between ion-trap microchip modules 2023 Mariam Akhtar
F. Bonus
Foni Raphaël Lebrun-Gallagher
N. I. Johnson
M. Siegele-Brown
Seokjun Hong
Samuel J. Hile
S. A. Kulmiya
Sebastian Weidt
W. K. Hensinger
+ A high-fidelity quantum matter-link between ion-trap microchip modules 2022 M. Akhtar
F. Bonus
Foni Raphaël Lebrun-Gallagher
N. I. Johnson
M. Siegele-Brown
S. Hong
S. J. Hile
S. A. Kulmiya
S. Weidt
W. K. Hensinger
+ High-Fidelity Transport of Trapped-Ion Qubits in a Multi-Layer Array 2023 Deviprasath Palani
Florian Hasse
Philip M. Kiefer
Frederick Boeckling
Jan-Philipp Schroeder
U. Warring
Tobias Schaetz
+ Trapped-ion quantum computing: Progress and challenges 2019 Colin Bruzewicz
John Chiaverini
Robert McConnell
Jeremy Sage
+ PDF Chat Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects 2014 C. Monroe
Robert Raussendorf
A. Ruthven
Kenneth R. Brown
Peter Maunz
Luming Duan
J. Kim
+ PDF Chat Multiplexed bi-layered realization of fault-tolerant quantum computation over optically networked trapped-ion modules 2024 Nitish K. Chandra
Saikat Guha
Kaushik P. Seshadreesan
+ Virtualized Logical Qubits: A 2.5D Architecture for Error-Corrected Quantum Computing 2020 Casey Duckering
Jonathan M. Baker
David Schuster
Frederic T. Chong
+ PDF Chat Scalable quantum computation with fast gates in two-dimensional microtrap arrays of trapped ions 2020 Zain Mehdi
Alexander K. Ratcliffe
J. J. Hope

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors