Rigorous noise reduction with quantum autoencoders

Type: Article

Publication Date: 2024-05-31

Citations: 0

DOI: https://doi.org/10.1116/5.0192456

Abstract

Reducing noise in quantum systems is a significant challenge in advancing quantum technologies. We propose and demonstrate a noise reduction scheme utilizing a quantum autoencoder, which offers rigorous performance guarantees. The quantum autoencoder is trained to compress noisy quantum states into a latent subspace and eliminate noise through projective measurements. We identify various noise models in which the noiseless state can be perfectly reconstructed, even at high noise levels. We apply the autoencoder to cool thermal states to the ground state and reduce the cost of magic state distillation by several orders of magnitude. Our autoencoder can be implemented using only unitary transformations without the need for ancillas, making it immediately compatible with state-of-the-art quantum technologies. We experimentally validate our noise reduction methods in a photonic integrated circuit. Our results have direct applications in enhancing the robustness of quantum technologies against noise.

Locations

  • AVS Quantum Science - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Rigorous noise reduction with quantum autoencoders 2023 Wai-Keong Mok
Hui Zhang
Tobias Haug
Xianshu Luo
Guo-Qiang Lo
Hong Cai
M. S. Kim
A. Q. Liu
L. C. Kwek
+ Detection-based error mitigation using quantum autoencoders 2020 Xiao‐Ming Zhang
Weicheng Kong
Muhammad Usman Farooq
Man‐Hong Yung
Guo‐Ping Guo
Xin Wang
+ PDF Chat Generic detection-based error mitigation using quantum autoencoders 2021 Xiao‐Ming Zhang
Weicheng Kong
Muhammad Usman Farooq
Man‐Hong Yung
Guo‐Ping Guo
Xin Wang
+ Quantum Circuit AutoEncoder 2023 Jun Wu
Hao Fu
Mingzheng Zhu
H. Y. Zhang
Wei Xie
Xiang‐Yang Li
+ PDF Chat Quantum circuit autoencoder 2024 Jun Wu
H. Fu
Mingzheng Zhu
H. Y. Zhang
Wei Xie
Xiang‐Yang Li
+ PDF Chat Quantum Autoencoders to Denoise Quantum Data 2020 Dmytro Bondarenko
Polina Feldmann
+ PDF Chat Experimental Realization of a Quantum Autoencoder: The Compression of Qutrits via Machine Learning 2019 Alex Pepper
Nora Tischler
Geoff J. Pryde
+ Denoising quantum states with Quantum Autoencoders -- Theory and Applications 2020 Tom Achache
Lior Horesh
John A. Smolin
+ Denoising quantum states with Quantum Autoencoders -- Theory and Applications 2020 Tom Achache
Lior Horesh
John A. Smolin
+ PDF Chat SuperEncoder: Towards Universal Neural Approximate Quantum State Preparation 2024 Yilun Zhao
Bingmeng Wang
Wenle Jiang
Xiwei Pan
Bing Li
Yinhe Han
Ying Wang
+ PDF Chat Using Deep Learning to Understand and Mitigate the Qubit Noise Environment 2021 David F. Wise
John J. L. Morton
Siddharth Dhomkar
+ Scalable quantum state tomography with artificial neural networks 2021 Tobias Schmale
Moritz Reh
Martin Gärttner
+ PDF Chat Quantum Error Correction with Quantum Autoencoders 2023 David F. Locher
Lorenzo Cardarelli
Markus MĂźller
+ Quantum Error Correction with Quantum Autoencoders 2022 David F. Locher
Lorenzo Cardarelli
Markus MĂźller
+ Quantum State Reconstruction in a Noisy Environment via Deep Learning 2023 Angela Rosy Morgillo
Stefano Mangini
Marco Piastra
Chiara Macchiavello
+ Variational Quantum Unsampling on a Quantum Photonic Processor 2019 Jacques Carolan
Masoud Mohseni
Jonathan P. Olson
Mihika Prabhu
Changchen Chen
Darius Bunandar
Nicholas C. Harris
Franco N. C. Wong
Michael Hochberg
Seth Lloyd
+ PDF Chat Noise-Assisted Quantum Autoencoder 2021 Chenfeng Cao
Xin Wang
+ Noise-Assisted Variational Quantum Thermalization 2021 Jonathan Foldager
Arthur Pesah
Lars Kai Hansen
+ PDF Chat Quantum Autoencoders for Learning Quantum Channel Codes 2024 Lakshika Rathi
Stephen DiAdamo
Alireza Shabani
+ Quantum Autoencoders for Learning Quantum Channel Codes 2023 Lakshika Rathi
Stephen DiAdamo
Alireza Shabani

Works That Cite This (0)

Action Title Year Authors