Type: Article
Publication Date: 2024-01-01
Citations: 2
DOI: https://doi.org/10.1017/fmp.2024.9
Abstract Let f be an $L^2$ -normalized holomorphic newform of weight k on $\Gamma _0(N) \backslash \mathbb {H}$ with N squarefree or, more generally, on any hyperbolic surface $\Gamma \backslash \mathbb {H}$ attached to an Eichler order of squarefree level in an indefinite quaternion algebra over $\mathbb {Q}$ . Denote by V the hyperbolic volume of said surface. We prove the sup-norm estimate $$\begin{align*}\| \Im(\cdot)^{\frac{k}{2}} f \|_{\infty} \ll_{\varepsilon} (k V)^{\frac{1}{4}+\varepsilon} \end{align*}$$ with absolute implied constant. For a cuspidal Maaß newform $\varphi $ of eigenvalue $\lambda $ on such a surface, we prove that $$\begin{align*}\|\varphi \|_{\infty} \ll_{\lambda,\varepsilon} V^{\frac{1}{4}+\varepsilon}. \end{align*}$$ We establish analogous estimates in the setting of definite quaternion algebras.
Action | Title | Year | Authors |
---|---|---|---|
+ | ON THE GENERAL TRIPLE CORRELATION SUMS FOR GL2×GL2×GL2 | 2024 |
Fei Hou |
+ | Triple Correlation Sums of Coefficients of Maass Forms For <i>SL</i>4(ℤ) | 2024 |
Fei Hou Guangshi Lü |