The Interval Domain in Homotopy Type Theory

Type: Book-Chapter
Publication Date: 2024-01-01
Citations: 0
DOI: https://doi.org/10.1007/978-3-031-61716-4_16

Locations

  • Lecture notes in computer science

Similar Works

We develop the theory of continuous and algebraic domains in constructive and predicative univalent foundations, building upon our earlier work on basic domain theory in this setting. That we work … We develop the theory of continuous and algebraic domains in constructive and predicative univalent foundations, building upon our earlier work on basic domain theory in this setting. That we work predicatively means that we do not assume Voevodsky's propositional resizing axioms. Our work is constructive in the sense that we do not rely on excluded middle or the axiom of (countable) choice. To deal with size issues and give a predicatively suitable definition of continuity of a dcpo, we follow Johnstone and Joyal's work on continuous categories. Adhering to the univalent perspective, we explicitly distinguish between data and property. To ensure that being continuous is a property of a dcpo, we turn to the propositional truncation, although we explain that some care is needed to avoid needing the axiom of choice. We also adapt the notion of a domain-theoretic basis to the predicative setting by imposing suitable smallness conditions, analogous to the categorical concept of an accessible category. All our running examples of continuous dcpos are then actually examples of dcpos with small bases which we show to be well behaved predicatively. In particular, such dcpos are exactly those presented by small ideals. As an application of the theory, we show that Scott's $D_\infty$ model of the untyped $\lambda$-calculus is an example of an algebraic dcpo with a small basis. Our work is formalised in the Agda proof assistant and its ability to infer universe levels has been invaluable for our purposes.
The real unit interval is the fundamental building block for many branches of mathematics like probability theory, measure theory, convex sets and homotopy theory. However, a priori the unit interval … The real unit interval is the fundamental building block for many branches of mathematics like probability theory, measure theory, convex sets and homotopy theory. However, a priori the unit interval could be considered an arbitrary choice and one can wonder if there is some more canonical way in which the unit interval can be constructed. In this paper we find such a construction by using the theory of effect algebras. We show that the real unit interval is the unique non-initial, non-final irreducible algebra of a particular monad on the category of bounded posets. The algebras of this monad carry an order, multiplication, addition and complement, and as such model much of the operations we need to do on probabilities. On a technical level, we show that both the categories of omega-complete effect algebras as well as that of omega-complete effect monoids are monadic over the category of bounded posets using Beck's monadicity theorem. The characterisation of the real unit interval then follows easily using a recent representation theorem for omega-complete effect monoids.
The real unit interval is the fundamental building block for many branches of mathematics like probability theory, measure theory, convex sets and homotopy theory. However, a priori the unit interval … The real unit interval is the fundamental building block for many branches of mathematics like probability theory, measure theory, convex sets and homotopy theory. However, a priori the unit interval could be considered an arbitrary choice and one can wonder if there is some more canonical way in which the unit interval can be constructed. In this paper we find such a construction by using the theory of effect algebras. We show that the real unit interval is the unique non-initial, non-final irreducible algebra of a particular monad on the category of bounded posets. The algebras of this monad carry an order, multiplication, addition and complement, and as such model much of the operations we need to do on probabilities. On a technical level, we show that both the categories of omega-complete effect algebras as well as that of omega-complete effect monoids are monadic over the category of bounded posets using Beck's monadicity theorem. The characterisation of the real unit interval then follows easily using a recent representation theorem for omega-complete effect monoids.
We develop domain theory in constructive univalent foundations without Voevodsky's resizing axioms. In previous work in this direction, we constructed the Scott model of PCF and proved its computational adequacy, … We develop domain theory in constructive univalent foundations without Voevodsky's resizing axioms. In previous work in this direction, we constructed the Scott model of PCF and proved its computational adequacy, based on directed complete posets (dcpos). Here we further consider algebraic and continuous dcpos, and construct Scott's $D_\infty$ model of the untyped $\lambda$-calculus. A common approach to deal with size issues in a predicative foundation is to work with information systems or abstract bases or formal topologies rather than dcpos, and approximable relations rather than Scott continuous functions. Here we instead accept that dcpos may be large and work with type universes to account for this. For instance, in the Scott model of PCF, the dcpos have carriers in the second universe $\mathcal{U}_1$ and suprema of directed families with indexing type in the first universe $\mathcal{U}_0$. Seeing a poset as a category in the usual way, we can say that these dcpos are large, but locally small, and have small filtered colimits. In the case of algebraic dcpos, in order to deal with size issues, we proceed mimicking the definition of accessible category. With such a definition, our construction of Scott's $D_\infty$ again gives a large, locally small, algebraic dcpo with small directed suprema.
We develop domain theory in constructive univalent foundations without Voevodsky's resizing axioms. In previous work in this direction, we constructed the Scott model of PCF and proved its computational adequacy, … We develop domain theory in constructive univalent foundations without Voevodsky's resizing axioms. In previous work in this direction, we constructed the Scott model of PCF and proved its computational adequacy, based on directed complete posets (dcpos). Here we further consider algebraic and continuous dcpos, and construct Scott's $D_\infty$ model of the untyped $\lambda$-calculus. A common approach to deal with size issues in a predicative foundation is to work with information systems or abstract bases or formal topologies rather than dcpos, and approximable relations rather than Scott continuous functions. Here we instead accept that dcpos may be large and work with type universes to account for this. For instance, in the Scott model of PCF, the dcpos have carriers in the second universe $\mathcal{U}_1$ and suprema of directed families with indexing type in the first universe $\mathcal{U}_0$. Seeing a poset as a category in the usual way, we can say that these dcpos are large, but locally small, and have small filtered colimits. In the case of algebraic dcpos, in order to deal with size issues, we proceed mimicking the definition of accessible category. With such a definition, our construction of Scott's $D_\infty$ again gives a large, locally small, algebraic dcpo with small directed suprema.
We develop domain theory in constructive and predicative univalent foundations (also known as homotopy type theory). That we work predicatively means that we do not assume Voevodsky's propositional resizing axioms. … We develop domain theory in constructive and predicative univalent foundations (also known as homotopy type theory). That we work predicatively means that we do not assume Voevodsky's propositional resizing axioms. Our work is constructive in the sense that we do not rely on excluded middle or the axiom of (countable) choice. Domain theory studies so-called directed complete posets (dcpos) and Scott continuous maps between them and has applications in programming language semantics, higher-type computability and topology. A common approach to deal with size issues in a predicative foundation is to work with information systems, abstract bases or formal topologies rather than dcpos, and approximable relations rather than Scott continuous functions. In our type-theoretic approach, we instead accept that dcpos may be large and work with type universes to account for this. A priori one might expect that complex constructions of dcpos result in a need for ever-increasing universes and are predicatively impossible. We show that such constructions can be carried out in a predicative setting. We illustrate the development with applications in the semantics of programming languages: the soundness and computational adequacy of the Scott model of PCF and Scott's $D_\infty$ model of the untyped $\lambda$-calculus. We also give a predicative account of continuous and algebraic dcpos, and of the related notions of a small basis and its rounded ideal completion. The fact that nontrivial dcpos have large carriers is in fact unavoidable and characteristic of our predicative setting, as we explain in a complementary chapter on the constructive and predicative limitations of univalent foundations. Our account of domain theory in univalent foundations is fully formalised with only a few minor exceptions. The ability of the proof assistant Agda to infer universe levels has been invaluable for our purposes.
In current teaching materials, when using Dedekind cuts to construct real numbers, the definition of a Dedekind cut is always involved in defining addition and multiplication. In this paper, as … In current teaching materials, when using Dedekind cuts to construct real numbers, the definition of a Dedekind cut is always involved in defining addition and multiplication. In this paper, as it is done in many current textbooks, Dedekind cuts are used to construct the set of real numbers. Then the order in it is defined, and the least-upper-bound property, as well as the density properties of rational cuts in the set of real numbers, is established. Later, when defining addition and multiplication and establishing relative properties, the definition of cut will not be used again. This makes the process simpler and easier to understand.
A brief introduction into Idempotent Mathematics and an idempotent version of Interval Analysis are presented. Some applications are discussed. A brief introduction into Idempotent Mathematics and an idempotent version of Interval Analysis are presented. Some applications are discussed.
When working in Homotopy Type Theory and Univalent Foundations, the traditional role of the category of sets, Set, is replaced by the category hSet of homotopy sets (h-sets); types with … When working in Homotopy Type Theory and Univalent Foundations, the traditional role of the category of sets, Set, is replaced by the category hSet of homotopy sets (h-sets); types with h-propositional identity types. Many of the properties of Set hold for hSet ((co)completeness, exactness, local cartesian closure, etc.). Notably, however, the univalence axiom implies that Ob(hSet) is not itself an h-set, but an h-groupoid. This is expected in univalent foundations, but it is sometimes useful to also have a stricter universe of sets, for example when constructing internal models of type theory. In this work, we equip the type of iterative sets V0, due to Gylterud (2018) as a refinement of the pioneering work of Aczel (1978) on universes of sets in type theory, with the structure of a Tarski universe and show that it satisfies many of the good properties of h-sets. In particular, we organize V0 into a (non-univalent strict) category and prove that it is locally cartesian closed. This enables us to organize it into a category with families with the structure necessary to model extensional type theory internally in HoTT/UF. We do this in a rather minimal univalent type theory with W-types, in particular we do not rely on any HITs, or other complex extensions of type theory. Furthermore, the construction of V0 and the model is fully constructive and predicative, while still being very convenient to work with as the decoding from V0 into h-sets commutes definitionally for all type constructors. Almost all of the paper has been formalized in Agda using the agda-unimath library of univalent mathematics.
Abstract When working in homotopy type theory and univalent foundations, the traditional role of the category of sets, $\mathcal{Set}$ , is replaced by the category $\mathcal{hSet}$ of homotopy sets (h-sets); … Abstract When working in homotopy type theory and univalent foundations, the traditional role of the category of sets, $\mathcal{Set}$ , is replaced by the category $\mathcal{hSet}$ of homotopy sets (h-sets); types with h-propositional identity types. Many of the properties of $\mathcal{Set}$ hold for $\mathcal{hSet}$ ((co)completeness, exactness, local cartesian closure, etc.). Notably, however, the univalence axiom implies that $\mathsf{Ob}\,\mathcal{hSet}$ is not itself an h-set, but an h-groupoid. This is expected in univalent foundations, but it is sometimes useful to also have a stricter universe of sets, for example, when constructing internal models of type theory. In this work, we equip the type of iterative sets $\mathsf{V}^0$ , due to Gylterud ((2018). The Journal of Symbolic Logic 83 (3) 1132–1146) as a refinement of the pioneering work of Aczel ((1978). Logic Colloquium’77 , Studies in Logic and the Foundations of Mathematics, vol. 96, Elsevier, 55–66.) on universes of sets in type theory, with the structure of a Tarski universe and show that it satisfies many of the good properties of h-sets. In particular, we organize $\mathsf{V}^0$ into a (non-univalent strict) category and prove that it is locally cartesian closed. This enables us to organize it into a category with families with the structure necessary to model extensional type theory internally in HoTT/UF. We do this in a rather minimal univalent type theory with W-types, in particular we do not rely on any HITs, or other complex extensions of type theory. Furthermore, the construction of $\mathsf{V}^0$ and the model is fully constructive and predicative, while still being very convenient to work with as the decoding from $\mathsf{V}^0$ into h-sets commutes definitionally for all type constructors. Almost all of the paper has been formalized in $\texttt{Agda}$ using the $\texttt{agda}$ - $\texttt{unimath}$ library of univalent mathematics.
Introduction. The object of this paper is to characterize the clans (compact connected Hausdorff topological semigroups with an identity element) which are homeomorphic to a unit interval and which have … Introduction. The object of this paper is to characterize the clans (compact connected Hausdorff topological semigroups with an identity element) which are homeomorphic to a unit interval and which have a nondegenerate kernel (minimal two-sided ideal). The corresponding case when the kernel is degenerate has been characterized in a paper by H. Cohen and L. I. Wade [2] together with an earlier paper by Mostert and Shields [5]. In a topological semigroup T, K(T) or K denotes the kernel of T. The symbol u is reserved to denote an identity element. The term will mean a clan with zero which is homeomorphic to a unit interval and whose endpoints are its zero and identity element. In a standard thread T with identity element u and zero 0, for a, bCT, [a, b] will denote the interval from a to b, (or b to a) inclusive and a ? b will mean aC [0, b], with a x implies aRx (closed). We denote by Ra the set {x aRx }. The analog of Theorem I where R satisfies (2)' (a, b, cCX, aRb implies caRcb (left congruence) instead of (2) is also true. I would like to express my appreciation to Professor H. Cohen and Professor R. J. Koch for their assistance in the preparation of this paper.

Cited by (0)

References (8)

Working constructively, we study continuous directed complete posets (dcpos) and the Scott topology. Our two primary novelties are a notion of intrinsic apartness and a notion of sharp elements. Being … Working constructively, we study continuous directed complete posets (dcpos) and the Scott topology. Our two primary novelties are a notion of intrinsic apartness and a notion of sharp elements. Being apart is a positive formulation of being unequal, similar to how inhabitedness is a positive formulation of nonemptiness. To exemplify sharpness, we note that a lower real is sharp if and only if it is located. Our first main result is that for a large class of continuous dcpos, the Bridges-Vita apartness topology and the Scott topology coincide. Although we cannot expect a tight or cotransitive apartness on nontrivial dcpos, we prove that the intrinsic apartness is both tight and cotransitive when restricted to the sharp elements of a continuous dcpo. These include the strongly maximal elements, as studied by Smyth and Heckmann. We develop the theory of strongly maximal elements highlighting its connection to sharpness and the Lawson topology. Finally, we illustrate the intrinsic apartness, sharpness and strong maximality by considering several natural examples of continuous dcpos: the Cantor and Baire domains, the partial Dedekind reals and the lower reals.
We investigate predicative aspects of constructive univalent foundations. By predicative and constructive, we respectively mean that we do not assume Voevodsky's propositional resizing axioms or excluded middle. Our work complements … We investigate predicative aspects of constructive univalent foundations. By predicative and constructive, we respectively mean that we do not assume Voevodsky's propositional resizing axioms or excluded middle. Our work complements existing work on predicative mathematics by exploring what cannot be done predicatively in univalent foundations. Our first main result is that nontrivial (directed or bounded) complete posets are necessarily large. That is, if such a nontrivial poset is small, then weak propositional resizing holds. It is possible to derive full propositional resizing if we strengthen nontriviality to positivity. The distinction between nontriviality and positivity is analogous to the distinction between nonemptiness and inhabitedness. Moreover, we prove that locally small, nontrivial (directed or bounded) complete posets necessarily lack decidable equality. We prove our results for a general class of posets, which includes e.g. directed complete posets, bounded complete posets, sup-lattices and frames. Secondly, the fact that these nontrivial posets are necessarily large has the important consequence that Tarski's theorem (and similar results) cannot be applied in nontrivial instances. Furthermore, we explain that generalizations of Tarski's theorem that allow for large structures are provably false by showing that the ordinal of ordinals in a univalent universe has small suprema in the presence of set quotients. The latter also leads us to investigate the inter-definability and interaction of type universes of propositional truncations and set quotients, as well as a set replacement principle. Thirdly, we clarify, in our predicative setting, the relation between the traditional definition of sup-lattice that requires suprema for all subsets and our definition that asks for suprema of all small families.
Abstract Working constructively, we study continuous directed complete posets (dcpos) and the Scott topology. Our two primary novelties are a notion of intrinsic apartness and a notion of sharp elements. … Abstract Working constructively, we study continuous directed complete posets (dcpos) and the Scott topology. Our two primary novelties are a notion of intrinsic apartness and a notion of sharp elements. Being apart is a positive formulation of being unequal, similar to how inhabitedness is a positive formulation of nonemptiness. To exemplify sharpness, we note that a lower real is sharp if and only if it is located. Our first main result is that for a large class of continuous dcpos, the Bridges–Vîţǎ apartness topology and the Scott topology coincide. Although we cannot expect a tight or cotransitive apartness on nontrivial dcpos, we prove that the intrinsic apartness is both tight and cotransitive when restricted to the sharp elements of a continuous dcpo. These include the strongly maximal elements, as studied by Smyth and Heckmann. We develop the theory of strongly maximal elements highlighting its connection to sharpness and the Lawson topology. Finally, we illustrate the intrinsic apartness, sharpness, and strong maximality by considering several natural examples of continuous dcpos: the Cantor and Baire domains, the partial Dedekind reals, the lower reals and, finally, an embedding of Cantor space into an exponential of lifted sets.
Large scale real number computation is an essential ingredient in several modern mathematical proofs. Because such lengthy computations cannot be verified by hand, some mathematicians want to use software proof … Large scale real number computation is an essential ingredient in several modern mathematical proofs. Because such lengthy computations cannot be verified by hand, some mathematicians want to use software proof assistants to verify the correctness of these proofs. This paper develops a new implementation of the constructive real numbers and elementary functions for such proofs by using the monad properties of the completion operation on metric spaces. Bishop and Bridges's notion (Bishop and Bridges 1985) of regular sequences is generalised to what I call regular functions, which form the completion of any metric space. Using the monad operations, continuous functions on length spaces (which are a common subclass of metric spaces) are created by lifting continuous functions on the original space. A prototype Haskell implementation has been created. I believe that this approach yields a real number library that is reasonably efficient for computation, and still simple enough to verify its correctness easily.
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical … Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. This is the first book on the subject and lays its foundations. Many examples are given throughout. There is also an introductory chapter motivating the subject for topologists.
Abstract The ALEA Coq library formalizes measure theory based on a variant of the Giry monad on the category of sets. This enables the interpretation of a probabilistic programming language … Abstract The ALEA Coq library formalizes measure theory based on a variant of the Giry monad on the category of sets. This enables the interpretation of a probabilistic programming language with primitives for sampling from discrete distributions. However, continuous distributions have to be discretized because the corresponding measures cannot be defined on all subsets of their carriers. This paper proposes the use of synthetic topology to model continuous distributions for probabilistic computations in type theory. We study the initial σ -frame and the corresponding induced topology on arbitrary sets. Based on these intrinsic topologies, we define valuations and lower integrals on sets and prove versions of the Riesz and Fubini theorems. We then show how the Lebesgue valuation, and hence continuous distributions, can be constructed.
Real numbers do not admit an extensional procedure for observing discrete information, such as the first digit of its decimal expansion, because every extensional, computable map from the reals to … Real numbers do not admit an extensional procedure for observing discrete information, such as the first digit of its decimal expansion, because every extensional, computable map from the reals to the integers is constant, as is well known. We overcome this by considering real numbers equipped with additional structure, which we call a locator. With this structure, it is possible, for instance, to construct a signed-digit representation or a Cauchy sequence, and conversely these intensional representations give rise to a locator. Although the constructions are reminiscent of computable analysis, instead of working with a notion of computability, we simply work constructively to extract observable information, and instead of working with representations, we consider a certain locatedness structure on real numbers.
Abstract We develop the Scott model of the programming language PCF in univalent type theory. Moreover, we work constructively and predicatively. To account for the non-termination in PCF, we use … Abstract We develop the Scott model of the programming language PCF in univalent type theory. Moreover, we work constructively and predicatively. To account for the non-termination in PCF, we use the lifting monad (also known as the partial map classifier monad) from topos theory, which has been extended to univalent type theory by Escardó and Knapp. Our results show that lifting is a viable approach to partiality in univalent type theory. Moreover, we show that the Scott model can be constructed in a predicative and constructive setting. Other approaches to partiality either require some form of choice or quotient inductive-inductive types. We show that one can do without these extensions.