Howe correspondence of unipotent characters for a finite symplectic/even-orthogonal dual pair

Type: Article

Publication Date: 2024-05-24

Citations: 2

DOI: https://doi.org/10.1353/ajm.2024.a928326

Abstract

abstract: In this paper we give a complete and explicit description of the Howe correspondence of unipotent characters for a finite reductive dual pair of a symplectic group and an even orthogonal group in terms of the Lusztig parametrization. That is, the conjecture by Aubert-Michel-Rouquier is confirmed.

Locations

  • American Journal of Mathematics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Howe Correspondence of Unipotent Characters for a Finite Symplectic/Even-orthogonal Dual Pair 2019 Shu-Yen Pan
+ Lusztig Correspondence and Howe Correspondence for Finite Reductive Dual Pairs 2019 Shu-Yen Pan
+ On Theta and Eta Correspondences for Finite Symplectic/Orthogonal Dual Pairs 2020 Shu-Yen Pan
+ On the Howe correspondence for symplectic–orthogonal dual pairs 2005 Annegret Paul
+ Lusztig correspondence and Howe correspondence for finite reductive dual pairs 2024 Shu-Yen Pan
+ Decomposition of the Uniform Projection of the Weil Character 2020 Shu-Yen Pan
+ Theta correspondence for symplectic-orthogonal and metaplectic-orthogonal p-adic dual pairs 2019 Petar Bakić
Marcela Hanzer
+ Local duality of Hecke operators for symplectic and orthogonal groups 1992 В. Г. Журавлев
+ Unipotent characters of the symplectic and odd orthogonal groups over a finite field 1981 G. Lusztig
+ Theta correspondence for <i>p</i>-adic dual pairs of type I 2021 Petar Bakić
Marcela Hanzer
+ On the geometric Langlands conjecture for symplectic and odd orthogonal groups 2002 Sergey Lysenko
+ Weil Representations and Some Nonreductive Dual Pairs in Symplectic and Unitary Groups 2011 C. A. Pallikaros
Alexandre Zalesski
+ Howe correspondence and Springer correspondence for real reductive dual pairs 2013 Anne‐Marie Aubert
Witold Kraśkiewicz
Tomasz Przebinda
+ Compatible systems of symplectic Galois representations and the inverse Galois problem 2014 Sara Arias De Reyna Dominguez
+ A proof of the Howe duality conjecture 2014 Wee Teck Gan
Shuichiro Takeda
+ PDF Chat Prasad’s Conjecture About Dualizing Involutions 2023 Prashant Arote
Manish Mishra
+ Extremal unipotent representations for the finite Howe correspondence 2019 J. Epequin Chavez
+ The explicit Zelevinsky-Aubert duality 2020 Hiraku Atobe
Alberto Mínguez
+ Extremal unipotent representations for the finite Howe correspondence 2017 J. Epequin Chavez
+ Extremal unipotent representations for the finite Howe correspondence 2017 J. Epequin Chavez

Works Cited by This (0)

Action Title Year Authors