Type: Article
Publication Date: 2024-05-24
Citations: 0
DOI: https://doi.org/10.1515/ans-2023-0132
Abstract In this paper, we establish the existence of a bounded, linear extension operator <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>T</m:mi> <m:mspace width="0.17em"/> <m:mo>:</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:math> $T :{L}^{2,p}\left(E\right)\to {L}^{2,p}\left({\mathbb{R}}^{2}\right)$ when 1 < p < 2 and E is a finite subset of <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> ${\mathbb{R}}^{2}$ contained in a line.
Action | Title | Year | Authors |
---|---|---|---|
+ | The Sobolev extension problem on trees and in the plane | 2025 |
Jacob Carruth Arie Israel |