Sobolev extension in a simple case

Type: Article

Publication Date: 2024-05-24

Citations: 0

DOI: https://doi.org/10.1515/ans-2023-0132

Abstract

Abstract In this paper, we establish the existence of a bounded, linear extension operator <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>T</m:mi> <m:mspace width="0.17em"/> <m:mo>:</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:math> $T :{L}^{2,p}\left(E\right)\to {L}^{2,p}\left({\mathbb{R}}^{2}\right)$ when 1 &lt; p &lt; 2 and E is a finite subset of <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mrow> <m:mi mathvariant="double-struck">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> ${\mathbb{R}}^{2}$ contained in a line.

Locations

  • Advanced Nonlinear Studies - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Sobolev extension in a simple case 2024 Marjorie Drake
Charles Fefferman
Kevin Ren
Anna Skorobogatova
+ PDF Chat On Sobolev extension domains in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="bold">R</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math> 2010 Pavel Shvartsman
+ PDF Chat An embedding theorem of Sobolev type for an operator with singularity 1997 Shuji Watanabe
+ Sobolev Extension Operator 2024 Sebastian Bechtel
+ A Note on the Sobolev and Gagliardo--Nirenberg Inequality when 𝑝 &gt; 𝑁 2020 Alessio Porretta
+ Sobolev Extension By Linear Operators 2012 Charles Fefferman
Arie Israel
Garving K. Luli
+ Sobolev Extension By Linear Operators 2012 Charles Fefferman
Arie Israel
Garving K. Luli
+ A Journey Towards Understanding Extension Theorems on Sobolev Space 2017 Christopher Ryan Loga
+ An extension operator for orlicz-sobolev spaces 1981 Aparecido J. de Souza
+ Extension and Interpolation in Sobolev Spaces 2020 Charles Fefferman
Arie Israel
+ PDF Chat Linear extension operators for Sobolev spaces on radially symmetric binary trees 2023 Charles Fefferman
Bo’az Klartag
+ Sobolev inequality with non-uniformly degenerating gradient 2022 Farman Mamedov
Sara Monsurrò
+ PDF Chat Sobolev extension by linear operators 2013 Charles Fefferman
Arie Israel
Garving K. Luli
+ PDF Chat Sobolev imbedding theorems in borderline cases 1996 Nicola Fusco
Pierre Lions
Carlo Sbordone
+ A Sobolev Extension Domain That is Not Uniform 2006 Shanshuang Yang
+ The Structure of Sobolev Extension Operators 2012 Charles Fefferman
Arie Israel
Garving K. Luli
+ Approximate Extension in Sobolev Space 2020 Marjorie Drake
+ A Bounded Linear Extension Operator for $L^{2,p}(\R^2)$ 2010 Arie Israel
+ A Bounded Linear Extension Operator for $L^{2,p}(\R^2)$ 2010 Arie Israel
+ PDF Chat C<sup>m</sup>extension by linear operators 2007 Charles Fefferman

Works That Cite This (1)

Action Title Year Authors
+ The Sobolev extension problem on trees and in the plane 2025 Jacob Carruth
Arie Israel