Giant graviton expansion of Schur index and quasimodular forms

Type: Article

Publication Date: 2024-05-24

Citations: 6

DOI: https://doi.org/10.1007/jhep05(2024)282

Abstract

A bstract The flavored superconformal Schur index of $$ \mathcal{N} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi> </mml:math> = 4 U( N ) SYM has finite N corrections encoded in its giant graviton expansion in terms of D3 branes wrapped in AdS 5 × S 5 . The key element of this decomposition is the non-trivial index of the theory living on the wrapped brane system. A remarkable feature of the Schur limit is that the brane index is an analytic continuation of the flavored index of $$ \mathcal{N} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi> </mml:math> = 4 U( n ) SYM, where n is the total brane wrapping number. We exploit recent exact results about the Schur index of $$ \mathcal{N} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi> </mml:math> = 4 U( N ) SYM to evaluate the closed form of the brane indices appearing in the giant graviton expansion. Away from the unflavored limit, they are characterized by quasimodular forms providing exact information at all orders in the index universal fugacity. As an application of these results, we present novel exact expressions for the giant graviton expansion of the unflavored Schur index in a class of four dimensional $$ \mathcal{N} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi> </mml:math> = 2 theories with equal central charges a = c , i.e. the non-Lagrangian theories $$ \hat{\Gamma}\left(\textrm{SU}(N)\right) $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mover> <mml:mi>Γ</mml:mi> <mml:mo>̂</mml:mo> </mml:mover> <mml:mfenced> <mml:mrow> <mml:mi>SU</mml:mi> <mml:mfenced> <mml:mi>N</mml:mi> </mml:mfenced> </mml:mrow> </mml:mfenced> </mml:math> with Γ = E 6 , E 7 , E 8 .

Locations

  • Journal of High Energy Physics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Giant graviton expansion of Schur index and quasimodular forms 2024 Matteo Beccaria
Alejandro Cabo-Bizet
+ PDF Chat Root of unity asymptotics for Schur indices of 4d Lagrangian theories 2023 Giorgos Eleftheriou
+ Modularity of the Schur index, modular differential equations, and high-temperature asymptotics 2024 Yiwen Pan
Peihe Yang
+ On the brane expansion of the Schur index 2023 Matteo Beccaria
Alejandro Cabo-Bizet
+ Root of unity asymptotics for Schur indices of 4d Lagrangian theories 2022 Giorgos Eleftheriou
+ Comments on the Giant-Graviton Expansion of the Superconformal Index 2023 Dan Stefan Eniceicu
+ Finite $N$ indices and the giant graviton expansion 2022 James T. Liu
Neville Joshua Rajappa
+ PDF Chat Leading Giant graviton expansion of Schur correlators in large representations 2024 Matteo Beccaria
+ PDF Chat Schur indices of class <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">S</mml:mi></mml:math> and quasimodular forms 2022 Christopher Beem
Palash Singh
Shlomo S. Razamat
+ PDF Chat Finite N indices and the giant graviton expansion 2023 James T. Liu
Neville Joshua Rajappa
+ PDF Chat Superconformal index, BPS monodromy and chiral algebras 2017 Sergio Cecotti
Jaewon Song
Cumrun Vafa
Wenbin Yan
+ Non-planar anomalous dimensions in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mi mathvariant="italic">sl</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> sector 2012 Robert de Mello Koch
Pablo Díaz
Hesam Soltanpanahi
+ PDF Chat Large $N$ Schur index of $\mathcal N=4$ SYM from semiclassical D3 brane 2024 Matteo Beccaria
Alejandro Cabo-Bizet
+ PDF Chat Superconformal index of higher derivative $$ \mathcal{N}=1 $$ multiplets in four dimensions 2018 Matteo Beccaria
A.A. Tseytlin
+ PDF Chat Inductive calculation of superconformal indices based on giant graviton expansion 2024 Yosuke Imamura
Shuichi Murayama
+ PDF Chat Schur index of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>U</mml:mi><mml:mo mathvariant="bold" stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo mathvariant="bold" stretchy="false">)</mml:mo></mml:mrow></mml:math> supersymmetric Yang-Mills theory via the AdS/… 2020 Reona Arai
Shota Fujiwara
Yosuke Imamura
Tatsuya Mori
+ Inductive calculation of superconformal indices based on giant graviton expansion 2024 Yosuke Imamura
Shuichi Murayama
+ PDF Chat $$ \mathcal{N} $$ = 2 supersymmetric partially massless fields and other exotic non-unitary superconformal representations 2021 Noah Bittermann
Sebastián García-Sáenz
Kurt Hinterbichler
Rachel A. Rosen
+ PDF Chat New $$ \mathcal{N} $$ = 2 superconformal field theories from $$ \mathcal{S} $$-folds 2021 Simone Giacomelli
Carlo Meneghelli
Wolfger Peelaers
+ PDF Chat Studying superconformal symmetry enhancement through indices 2018 Mikhail Evtikhiev