Transversals in Latin Squares

Type: Book-Chapter

Publication Date: 2024-05-23

Citations: 0

DOI: https://doi.org/10.1017/9781009490559.006

Abstract

A Latin square is an n by n grid filled with n symbols so that each symbol appears exactly once in each row and each column. A transversal in a Latin square is a collection of cells which do not share any row, column, or symbol. This survey will focus on results from the last decade which have continued the long history of the study of transversals in Latin squares.

Locations

  • arXiv (Cornell University) - View - PDF
  • Cambridge University Press eBooks - View

Similar Works

Action Title Year Authors
+ PDF Chat Transversals in Latin Squares 2024 Richard Montgomery
+ Transversals in Latin Squares 2009 Ian M. Wanless
+ Transversals in Latin Squares 2009 Ian M. Wanless
+ PDF Chat The number of transversals in a Latin square 2006 Brendan D. McKay
Jeanette C. McLeod
Ian M. Wanless
+ Latin transversals of rectangular arrays 2001 Sherman K. Stein
+ Latin squares with no transversals 2016 Nicholas J. Cavenagh
Ian M. Wanless
+ Latin squares with no transversals 2016 Nicholas J. Cavenagh
Ian M. Wanless
+ PDF Chat Latin Squares whose transversals share many entries 2024 Ali Selk Ghafari
Ian M. Wanless
+ PDF Chat Transversals of Latin squares and their generalizations 1975 Sherman K. Stein
+ On the number of transversals in latin squares 2015 Vladimir N. Potapov
+ Small Latin arrays have a near transversal 2019 Darcy Best
Kyle Pula
Ian M. Wanless
+ Small Latin arrays have a near transversal 2019 Darcy Best
Kyle Pula
Ian M. Wanless
+ Latin Squares and Related Structures 2016 Trent G. Marbach
+ All group-based latin squares possess near transversals 2019 Luis Goddyn
Kevin Halasz
+ All group-based latin squares possess near transversals 2019 Luis Goddyn
Kevin Halasz
+ PDF Chat Parity of transversals of Latin squares 2020 Darcy Best
Ian M. Wanless
+ PDF Chat Almost-full transversals in equi-$n$-squares 2024 Debsoumya Chakraborti
Micha Christoph
Zach Hunter
Richard Montgomery
Т. Г. Петров
+ Quasi-transversal in Latin Squares 2018 Adel P. Kazemi
Behnaz Pahlavsay
+ Quasi-transversal in Latin Squares 2018 Adel P. Kazemi
Behnaz Pahlavsay
+ An Algorithm for Transversals in Row-Latin Rectangls 2001 Shen Minggang

Works That Cite This (0)

Action Title Year Authors