No selection lemma for empty triangles

Type: Article

Publication Date: 2024-05-23

Citations: 0

DOI: https://doi.org/10.1007/s10474-024-01431-0

Abstract

Abstract Let P be a set of n points in general position in the plane. The Second Selection Lemma states that for any family of $$\Theta(n^3)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Θ</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> triangles spanned by P , there exists a point of the plane that lies in a constant fraction of them. For families of $$\Theta(n^{3-\alpha})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Θ</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>-</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> triangles, with $$0\le \alpha \le 1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>α</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , there might not be a point in more than $$\Theta(n^{3-2\alpha})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Θ</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>-</mml:mo> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> of those triangles. An empty triangle of P is a triangle spanned by P not containing any point of P in its interior. Bárány conjectured that there exists an edge spanned by P that is incident to a super-constant number of empty triangles of P . The number of empty triangles of P might be as low as $$\Theta(n^2)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Θ</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> ; in such a case, on average, every edge spanned by P is incident to a constant number of empty triangles. The conjecture of Bárány suggests that for the class of empty triangles the above upper bound might not hold. In this paper we show that, somewhat surprisingly, the above upper bound does in fact hold for empty triangles. Specifically, we show that for any integer n and real number $$0\leq \alpha \leq 1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>α</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> there exists a point set of size n with $$\Theta(n^{3-\alpha})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Θ</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>-</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> empty triangles such that any point of the plane is only in $$O(n^{3-2\alpha})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>-</mml:mo> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> empty triangles.

Locations

  • Acta Mathematica Academiae Scientiarum Hungaricae - View - PDF

Similar Works

Action Title Year Authors
+ No Selection Lemma for Empty Triangles 2022 Ruy Fabila‐Monroy
Carlos Hidalgo-Toscano
Daniel Perz
Birgit Vogtenhuber
+ PDF Chat No Selection Lemma for Empty Triangles 2021 Ruy Fabila‐Monroy
Carlos Hidalgo-Toscano
Daniel Perz
Birgit Vogtenhuber
+ On empty triangles determined by points in the plane 1988 Meir Katchalski
A. Meir
+ On the Existence of Ordinary Triangles 2017 Radoslav Fulek
Hossein Nassajian Mojarrad
Márton Naszódi
József Solymosi
Sebastian U. Stich
May Szedlák
+ On the Existence of Ordinary Triangles 2017 Radoslav Fulek
Hossein Nassajian Mojarrad
Márton Naszódi
József Solymosi
Sebastian U. Stich
May Szedlák
+ PDF Chat Empty red-red-blue triangles 2024 Ting-Wei Chao
Zichao Dong
Zhuo Wu
+ PDF Chat A Structural Theorem for Sets with Few Triangles 2023 Sam Mansfield
Jonathan Passant
+ A Note on the Number of Empty Triangles 2012 Alfredo Garcı́a
+ Random Triangles 1990 Joe Whittaker
+ Random Triangles 1990 Joe Whittaker
+ Random Obtuse Triangles 1968 N. T. Gridgeman
+ The lower bound of the number of non-overlapping triangles 2003 Changqing Xu
Рен Динг
+ A Mattila-Sjölin theorem for triangles 2021 Eyvindur A. Palsson
Francisco Romero Acosta
+ Tiling the plane with noncongruent triangles 2018 Gábor Tardos
+ Covering a Triangle with Triangles: An Old Problem Revisited 2021 Janne Hakkarainen
+ How Many Triangles? 1985 James M. Moser
+ Orthogonal queries in triangles. 1993 Takeshi Tokuyama
+ On the existence of ordinary triangles 2017 Radoslav Fulek
Hossein Nassajian Mojarrad
Márton Naszódi
József Solymosi
Sebastian U. Stich
May Szedlák
+ The number of unit-area triangles in the plane: Theme and variations 2015 Orit E. Raz
Micha Sharir
+ An Improved Bound on the Number of Unit Area Triangles 2010 Roel Apfelbaum
Micha Sharir

Works That Cite This (0)

Action Title Year Authors