Type: Article
Publication Date: 2024-05-22
Citations: 0
DOI: https://doi.org/10.1007/s00025-024-02199-z
Abstract We raise the question of the realizability of permutation modules in the context of Kahn’s realizability problem for abstract groups and the G -Moore space problem. Specifically, given a finite group G , we consider a collection $$\{M_i\}_{i=1}^n$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mrow> <mml:mo>{</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>}</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:msubsup> </mml:math> of finitely generated $$\mathbb {Z}G$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Z</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> -modules that admit a submodule decomposition on which G acts by permuting the summands. Then we prove the existence of connected finite spaces X that realize each $$M_i$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:math> as its i -th homology, G as its group of self-homotopy equivalences $$\mathcal {E}(X)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , and the action of G on each $$M_i$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:math> as the action of $$\mathcal {E}(X)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> on $$H_i(X; \mathbb {Z})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>;</mml:mo> <mml:mi>Z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> .
Action | Title | Year | Authors |
---|