Quantitative asymptotics for polynomial patterns in the primes

Type: Preprint

Publication Date: 2024-05-20

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2405.12190

Abstract

We prove quantitative estimates for averages of the von Mangoldt and M\"obius functions along polynomial progressions $n+P_1(m),\ldots, n+P_k(m)$ for a large class of polynomials $P_i$. The error terms obtained save an arbitrary power of logarithm, matching the classical Siegel--Walfisz error term. These results give the first quantitative bounds for the Tao--Ziegler polynomial patterns in the primes result, and in the M\"obius case they are new even qualitatively for some collections of polynomials. The proofs are based on a quantitative generalised von Neumann theorem of Peluse, a recent result of Leng on strong bounds for the Gowers uniformity of the primes, and analysis of a ``Siegel model'' for the von Mangoldt function along polynomial progressions.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat POLYNOMIAL PATTERNS IN THE PRIMES 2018 Terence Tao
Tamar Ziegler
+ Quantitative bounds for Gowers uniformity of the Möbius and von Mangoldt functions 2021 Terence Tao
Joni TerÀvÀinen
+ Polynomial patterns in the primes 2016 Terence Tao
Tamar Ziegler
+ Quantitative bounds for Gowers uniformity of the Möbius and von Mangoldt functions 2023 Terence Tao
Joni TerÀvÀinen
+ A pretentious proof of Linnik's estimate for primes in arithmetic progressions 2022 Stelios Sachpazis
+ Bateman-Horn, polynomial Chowla and the Hasse principle with probability 1 2022 T. D. Browning
Efthymios Sofos
Joni TerÀvÀinen
+ PDF Chat The primes contain arbitrarily long polynomial progressions 2008 Terence Tao
Tamar Ziegler
+ PDF Chat Asymptotics for some polynomial patterns in the primes 2019 Pierre‐Yves Bienvenu
+ Asymptotics for some polynomial patterns in the primes 2015 Pierre‐Yves Bienvenu
+ Asymptotics for some polynomial patterns in the primes 2015 Pierre‐Yves Bienvenu
+ Limiting distributions of the classical error terms of prime number theory 2013 Amir Akbary
Nathan Ng
Majid Shahabi
+ Limiting distributions of the classical error terms of prime number theory 2013 Amir Akbary
Nathan Ng
Majid Shahabi
+ PDF Chat Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method 2017 Sary Drappeau
+ New characterizations of the summatory function of the M\"obius function 2021 Maxie D. Schmidt
+ PDF Chat The first moment of primes in arithmetic progressions: beyond the Siegel–Walfisz range 2021 Sary Drappeau
Daniel Fiorilli
+ Ergodic averages for sparse sequences along primes 2023 Andreas Koutsogiannis
Konstantinos Tsinas
+ PDF Chat Pointwise convergence of bilinear polynomial averages over the primes 2024 Ben Krause
Hamed Mousavi
Terence Tao
Joni TerÀvÀinen
+ PDF Chat On a family of arithmetic series related to the M\"obius function 2024 GĂ©rald Tenenbaum
+ Narrow progressions in the primes 2014 Terence Tao
Tamar Ziegler
+ PDF Chat Bounds for sets with no polynomial progressions 2020 Sarah Peluse

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors