Type: Article
Publication Date: 2024-01-01
Citations: 0
DOI: https://doi.org/10.18514/mmn.2024.4203
In this paper, we firstly establish an identity by using the notions of quantum derivatives and integrals. Using this quantum identity, quantum Newton-type inequalities associated with convex functions are proved. We also show that the newly established inequalities can be recaptured into some existing inequalities by taking <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>q</mml:mi> <mml:mo class="MathClass-rel" stretchy="false">→</mml:mo> <mml:msup><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo class="MathClass-bin" stretchy="false">−</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>. Finally, we give mathematical examples of convex functions to verify the newly established inequalities.
Action | Title | Year | Authors |
---|