Newton-type inequalities associated with convex functions via quantum calculus

Type: Article

Publication Date: 2024-01-01

Citations: 0

DOI: https://doi.org/10.18514/mmn.2024.4203

Abstract

In this paper, we firstly establish an identity by using the notions of quantum derivatives and integrals. Using this quantum identity, quantum Newton-type inequalities associated with convex functions are proved. We also show that the newly established inequalities can be recaptured into some existing inequalities by taking <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>q</mml:mi> <mml:mo class="MathClass-rel" stretchy="false">→</mml:mo> <mml:msup><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo class="MathClass-bin" stretchy="false">−</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>. Finally, we give mathematical examples of convex functions to verify the newly established inequalities.

Locations

  • Miskolc mathematical notes/Mathematical notes - View - PDF
  • Repository of the Academy's Library (Library of the Hungarian Academy of Sciences) - View - PDF

Similar Works

Action Title Year Authors
+ Simpson and Newton type inequalities for convex functions via newly defined quantum integrals 2020 Hüseyin Budak
Samet Erden
Muhammad Aamir Ali
+ PDF Chat Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus 2020 Miguel Vivas–Cortez
Muhammad Aamir Ali
Artion Kashuri
Ifra Bashir Sial
Zhiyue Zhang
+ PDF Chat Some New Simpson’s and Newton’s Formulas Type Inequalities for Convex Functions in Quantum Calculus 2021 Pimchana Siricharuanun
Samet Erden
Muhammad Aamir Ali
Hüseyin Budak
Saowaluck Chasreechai
Thanin Sitthiwirattham
+ PDF Chat A new extension of quantum Simpson's and quantum Newton's type inequalities for quantum differentiable convex functions 2021 Muhammad Aamir Ali
Hüseyin Budak
Zhiyue Zhang
+ PDF Chat Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications 2022 Dafang Zhao
Muhammad Aamir Ali
Waewta Luangboon
Hüseyin Budak
Kamsing Nonlaopon
+ A new extension of quantum Simpson's and quantum Newton's type inequalities for quantum differentiable convex functions 2021 Muhammad Aamir Ali
Hüseyin Budak
Zhiyue Zhang
+ On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters 2021 Chanon Promsakon
Muhammad Aamir Ali
Hüseyin Budak
Mujahid Abbas
Faheem Muhammad
Thanin Sitthiwirattham
+ PDF Chat Certain Generalized Quantum Simpson's and Quantum Newton's type Inequalities for Convex Functions in Quantum Calculus 2020 Muhammad Aamir Ali
Hüseyin Budak
Praveen Agarwal
Yu‐Ming Chu
+ PDF Chat Simpson’s and Newton’s Type Inequalities for (α,m)-Convex Functions via Quantum Calculus 2022 Jarunee Soontharanon
Muhammad Aamir Ali
Hüseyin Budak
Kamsing Nonlaopon
Zoya Abdullah
+ Simpson Type Estimations for Convex Functions via Quantum Calculus 2024 Samet Erden
Alp Necmettin
Iftikhar Sabah
+ PDF Chat Some Parameterized Quantum Midpoint and Quantum Trapezoid Type Inequalities for Convex Functions with Applications 2021 Suphawat Asawasamrit
Muhammad Aamir Ali
Sotiris K. Ntouyas
Jessada Tariboon
+ PDF Chat Some parameterized quantum Simpson's and quantum Newton's integral inequalities via quantum differentiable convex mappings 2022 Xuexiao You
Muhammad Aamir Ali
Hüseyin Budak
Dafang Zhao
+ PDF Chat Some Parameterized Quantum Simpson’s and Quantum Newton’s Integral Inequalities via Quantum Differentiable Convex Mappings 2021 Xue Xiao You
Muhammad Aamir Ali
Hüseyin Budak
Miguel Vivas–Cortez
Shahid Qaisar
+ PDF Chat Different types of quantum integral inequalities via ( α , m ) $(\alpha ,m)$ -convexity 2018 Yao Zhang
Tingsong Du
Hao Wang
Yanjun Shen
+ PDF Chat On Some New Simpson’s Formula Type Inequalities for Convex Functions in Post-Quantum Calculus 2021 Miguel Vivas–Cortez
Muhammad Aamir Ali
Shahid Qaisar
Ifra Bashir Sial
Sinchai Jansem
Abdul Mateen
+ PDF Chat Trapezoidal-Type Inequalities for Strongly Convex and Quasi-Convex Functions via Post-Quantum Calculus 2021 Humaira Kalsoom
Miguel Vivas–Cortez
Muhammad Amer Latif
+ PDF Chat Some Milne’s rule type inequalities in quantum calculus 2023 Ifra Bashir Sial
Hüseyin Budak
Muhammad Ali
+ Quantum Integral Inequalities for Generalized Convex Functions 2017 Muhammad Aslam Noor
Khalida Inayat Noor
Muhammad Uzair Awan
+ PDF Chat Quantum Inequalities of Hermite–Hadamard Type for <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mi>r</mi> </math>-Convex Functions 2021 Xuexiao You
Hasan Kara
Hüseyin Budak
Humaira Kalsoom
+ Quantum symmetric integral inequalities for convex functions 2024 Ammara Nosheen
Sana Ijaz
Khuram Ali Khan
Khalid Mahmood Awan
Hüseyin Budak

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (15)

Action Title Year Authors
+ PDF Chat Quantum integral inequalities on finite intervals 2014 Jessada Tariboon
Sotiris K. Ntouyas
+ PDF Chat On Simpson's inequality and applications 2000 Sever S Dragomir
Ravi P. Agarwal
Pietro Cerone
+ PDF Chat Quantum calculus on finite intervals and applications to impulsive difference equations 2013 Jessada Tariboon
Sotiris K. Ntouyas
+ PDF Chat Some Fractional <i>q</i>-Integrals and <i>q</i>-Derivatives 1966 W. A. Al‐Salam
+ NEWTON’S-TYPE INTEGRAL INEQUALITIES VIA LOCAL FRACTIONAL INTEGRALS 2019 Sabah Iftikhar
Poom Kumam
Samet Erden
+ On generalizations of some inequalities for convex functions via quantum integrals 2020 Samet Erden
Sabah Iftikhar
M. Rostamian Delavar
Poom Kumam
Phatiphat Thounthong
Wiyada Kumam
+ PDF Chat Local fractional Newton’s inequalities involving generalized harmonic convex functions 2020 Sabah Iftikhar
Samet Erden
Poom Kumam
Muhammad Uzair Awan
+ Simpson and Newton type inequalities for convex functions via newly defined quantum integrals 2020 Hüseyin Budak
Samet Erden
Muhammad Aamir Ali
+ PDF Chat New Simpson Type Integral Inequalities for <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mi>s</mi> </math>-Convex Functions and Their Applications 2020 Artion Kashuri
Pshtiwan Othman Mohammed
Thabet Abdeljawad
Faraidun K. Hamasalh
Yu‐Ming Chu
+ PDF Chat New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions 2021 Muhammad Aamir Ali
Mujahid Abbas
Hüseyin Budak
Praveen Agarwal
Ghulam Murtaza
Yu‐Ming Chu