Generalized Cesàro operator acting on Hilbert spaces of analytic functions

Type: Article

Publication Date: 2024-05-14

Citations: 0

DOI: https://doi.org/10.1007/s43034-024-00365-6

Abstract

Abstract Let $$\mathbb {D}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>D</mml:mi> </mml:math> denote the unit disc in $$\mathbb {C}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>C</mml:mi> </mml:math> . We define the generalized Cesàro operator as follows: $$\begin{aligned} C_{\omega }(f)(z)=\int _0^1 f(tz)\left( \frac{1}{z}\int _0^z B^{\omega }_t(u)\,\textrm{d}u\right) \,\omega (t)\textrm{d}t, \end{aligned}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>ω</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mo>∫</mml:mo> <mml:mn>0</mml:mn> <mml:mn>1</mml:mn> </mml:msubsup> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mfenced> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>z</mml:mi> </mml:mfrac> <mml:msubsup> <mml:mo>∫</mml:mo> <mml:mn>0</mml:mn> <mml:mi>z</mml:mi> </mml:msubsup> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mi>t</mml:mi> <mml:mi>ω</mml:mi> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mspace/> <mml:mtext>d</mml:mtext> <mml:mi>u</mml:mi> </mml:mfenced> <mml:mspace/> <mml:mi>ω</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mtext>d</mml:mtext> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> where $$\{B^{\omega }_\zeta \}_{\zeta \in \mathbb {D}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mo>{</mml:mo> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mi>ζ</mml:mi> <mml:mi>ω</mml:mi> </mml:msubsup> <mml:mo>}</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>ζ</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> </mml:math> are the reproducing kernels of the Bergman space $$A^{2}_{\omega }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>A</mml:mi> <mml:mi>ω</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> </mml:math> induced by a radial weight $$\omega $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>ω</mml:mi> </mml:math> in the unit disc $$\mathbb {D}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>D</mml:mi> </mml:math> . We study the action of the operator $$C_{\omega }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>ω</mml:mi> </mml:msub> </mml:math> on weighted Hardy spaces of analytic functions $$\mathcal {H}_{\gamma }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>γ</mml:mi> </mml:msub> </mml:math> , $$\gamma &gt;0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> and on general weighted Bergman spaces $$A^{2}_{\mu }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>A</mml:mi> <mml:mi>μ</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> </mml:math> .

Locations

  • Annals of Functional Analysis - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Generalized Cesàro operators in weighted Banach spaces of analytic functions with sup-norms 2024 Angela A. Albanese
José Bonet
Werner J. Ricker
+ PDF Chat Generalized Cesàro operators in the disc algebra and in Hardy spaces 2024 Angela A. Albanese
José Bonet
Werner J. Ricker
+ PDF Chat Cesàro-like operators acting on spaces of analytic functions 2022 Πέτρος Γαλανόπουλος
Daniel Girela
Noel Merchán
+ PDF Chat Spectral properties of generalized Cesàro operators in sequence spaces 2023 Angela A. Albanese
José Bonet
Werner J. Ricker
+ Generalized Cesáro operator on BMOA space 2020 Sunanda Naik
+ The Cesàro operator 2024 William T. Ross
+ Adjoint of generalized Cesáro operators on analytic function spaces 2020 Sunanda Naik
Pankaj Kumar Nath
+ Extended Cesàro operators between Bloch-type spaces in the unit ball of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="bold">C</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math> 2006 Xiaomin Tang
+ PDF Chat Discrete generalized Cesàro operators 1982 H. C. Rhaly
+ PDF Chat Generalized Ces\`aro operator acting on Hilbert spaces of analytic functions 2024 Alejandro Mas
Noel Merchán
Elena de la Rosa
+ Generalized Cesàro operators on the spaces of Cauchy transforms 2017 D. Borgohain
S. Naik
+ PDF Chat Cesáro type operators on spaces of analytic functions 2011 S. Naik
+ Extended cesÀro operators and multipliers on bmoa 2012 Xiaofen Lv
+ A NOTE ON GENERALIZED CESÀRO OPERATORS 2003 Der–Chen Chang
Robert P. Gilbert
Gang Wang
+ Extended Cesáro operators from generally weighted Bloch spaces to Zygmund space 2009 Zhong-Shan Fang
Ze‐Hua Zhou
+ Cesàro-like operators acting on a class of analytic function spaces 2023 Pengcheng Tang
+ Extended Cesaro Operator between Bloch-type Spaces 2009 Lv
Xiao-fen
+ EXTENDED CESÀRO OPERATORS ON THE BLOCH SPACE IN THE UNIT BALL OF C<sup>N</sup> 2004 Zhangjian Hu
+ On the boundedness of generalized Cesàro operators on Sobolev spaces 2013 Carlos Lizama
Pedro J. Miana
Rodrigo Ponce
Luis Sánchez–Lajusticia
+ PDF Chat EXTENDED CESÀRO OPERATORS FROM F(p,q,s) SPACES TO BLOCH-TYPE SPACES IN THE UNIT BALL 2009 Xiaofen Lv
Xiaomin Tang

Works That Cite This (0)

Action Title Year Authors