A Priori Estimates for Solutions to Landau Equation Under Prodi–Serrin Like Criteria

Type: Article

Publication Date: 2024-05-13

Citations: 3

DOI: https://doi.org/10.1007/s00205-024-01992-y

Abstract

Abstract In this paper, we introduce Prodi–Serrin like criteria which enable us to provide a priori estimates for the solutions to the spatially homogeneous Landau equation for all classical soft potentials and dimensions $$d \geqq 3$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≧</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> . The physical case of Coulomb interaction in dimension $$d=3$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> is included in our analysis; this generalizes the work of Silvestre (J Differ Equ 262:3034–3055, 2017). Our approach is quantitative and does not require a preliminary knowledge of elaborate tools for nonlinear parabolic equations.

Locations

  • Archive for Rational Mechanics and Analysis - View - PDF

Similar Works

Action Title Year Authors
+ A priori estimates for solutions to Landau equation under Prodi-Serrin like criteria 2023 Ricardo J. Alonso
Véronique Bagland
Laurent Desvillettes
Bertrand Lods
+ Local existence for the Landau Equation with hard potentials 2019 Sanchit Chaturvedi
+ Stability of vacuum for the Landau equation with hard potentials 2022 Sanchit Chaturvedi
+ Local regularity for the space-homogenous Landau equation with very soft potentials 2024 François Golse
Cyril Imbert
Alexis Vasseur
+ A $L^{2}$ to $L^{\infty}$ approach for the Landau Equation 2016 Jin‐Oh Kim
Yan Guo
Hyung Ju Hwang
+ PDF Chat The Landau Equation with the Specular Reflection Boundary Condition 2020 Yan Guo
Hyung Ju Hwang
Jin Woo Jang
Zhimeng Ouyang
+ PDF Chat The Landau Equation with Moderate Soft Potentials: An Approach Using $\Varepsilon$-Poincar\'E Inequality and Lorentz Spaces 2023 Ricardo J. Alonso
Véronique Bagland
Bertrand Lods
+ The Landau equation with moderate soft potentials: An approach using $\varepsilon$-Poincaré inequality and Lorentz spaces 2023 Ricardo J. Alonso
Véronique Bagland
Bertrand Lods
+ PDF Chat Some a priori estimates for the homogeneous Landau equation with soft potentials 2015 Chunjin Lin
Jie Liao
Radjesvarane Alexandre
+ Stability of vacuum for the Landau equation with hard potentials 2020 Sanchit Chaturvedi
+ Global in Time Estimates for the Spatially Homogeneous Landau Equation with Soft Potentials 2013 Kung-Chien Wu
+ Regions of applicability of Aubry-Mather Theory for non-convex Hamiltonian 2011 Min Zhou
Binggui Zhong
+ PDF Chat Local Existence for the Landau Equation with Hard Potentials 2023 Sanchit Chaturvedi
+ PDF Chat Landau Equation for Very Soft and Coulomb Potentials Near Maxwellians 2017 Kléber Carrapatoso
S. Mischler
+ Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation 2016 François Golse
Cyril Imbert
Clément Mouhot
Alexis Vasseur
+ PDF Chat Wolff potentials and nonlocal equations of Lane-Emden type 2024 Quoc Hung Nguyen
Jihoon Ok
Kyeong Song
+ PDF Chat Normalized solutions for Sobolev critical Schr\"{o}dinger equations on bounded domains 2024 Dario Pierotti
Gianmaria Verzini
Junwei Yu
+ Schr\"odinger equations with singular potentials: linear and nonlinear boundary value problems 2018 Moshe Marcus
Phuoc‐Tai Nguyen
+ Mathematical supplement 2007 Viatcheslav Mukhanov
Sergei Winitzki
+ Stability, well-posedness and regularity of the homogeneous Landau equation for hard potentials 2020 Nicolas Fournier
Daniel Heydecker