Higher Berry Connection for Matrix Product States

Type: Preprint

Publication Date: 2024-05-08

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2405.05327

Abstract

In one spatial dimension, families of short-range entangled many-body quantum states, parameterized over some parameter space, can be topologically distinguished and classified by topological invariants built from the higher Berry phase -- a many-body generalization of the Berry phase. Previous works identified the underlying mathematical structure (the gerbe structure) and introduced a multi-wavefunction overlap, a generalization of the inner product in quantum mechanics, which allows for the extraction of the higher Berry phase and topological invariants. In this paper, building on these works, we introduce a connection, the higher Berry connection, for a family of parameterized Matrix Product States (MPS) over a parameter space. We demonstrate the use of our formula for simple non-trivial models.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Higher structures in matrix product states 2023 Shuhei Ohyama
Shinsei Ryu
+ PDF Chat Higher structures in matrix product states 2024 Shuhei Ohyama
Shinsei Ryu
+ Higher Berry connection for matrix product states 2025 Shuhei Ohyama
Shinsei Ryu
+ PDF Chat Higher Berry Phase from Projected Entangled Pair States in (2+1) dimensions 2024 Shuhei Ohyama
Shinsei Ryu
+ PDF Chat Phase space formulation of the Abelian and non-Abelian quantum geometric tensor 2020 Diego GonzĂĄlez
Daniel GutiĂ©rrez‐Ruiz
J. David Vergara
+ Matrix Product States and Projected Entangled Pair States: Concepts, Symmetries, and Theorems 2020 J. I. Cirac
David PĂ©rez-Garcı́a
Norbert Schuch
Frank Verstraete
+ PDF Chat CLASSIFICATION OF ENTANGLEMENT IN SYMMETRIC STATES 2012 Martin Aulbach
+ PDF Chat Matrix product states and projected entangled pair states: Concepts, symmetries, theorems 2021 J. I. Cirac
David PĂ©rez-Garcı́a
Norbert Schuch
Frank Verstraete
+ PDF Chat Higher Berry Curvature from the Wave function II: Locally Parameterized States Beyond One Dimension 2024 Ophelia Evelyn Sommer
Ashvin Vishwanath
Xueda Wen
+ Charting the space of ground states with tensor networks 2023 Marvin Qi
David T. Stephen
Xueda Wen
Daniel Spiegel
Markus J. Pflaum
AgnĂšs Beaudry
Michael Hermele
+ PDF Chat Multipartite Quantum Correlations: Symplectic and Algebraic Geometry Approach 2018 A. Sawicki
Tomasz MaciÄ…ĆŒek
Katarzyna Karnas
Katarzyna Kowalczyk-Murynka
Marek Kuƛ
MichaƂ Oszmaniec
+ From Classical to Quantum Information Geometry: A Guide for Physicists 2023 J. Lambert
E. S. SĂžrensen
+ PDF Chat From classical to quantum information geometry: a guide for physicists 2023 J. D. Lambert
Erik S. SĂžrensen
+ PDF Chat Introduction to quantum entanglement in many-body systems 2024 Anubhav Kumar Srivastava
Guillem MĂŒller-Rigat
Maciej Lewenstein
Grzegorz Rajchel-Mieldzioć
+ PDF Chat Entanglement through Path Identification 2018 Karl Svozil
+ PDF Chat Matrix Product States in Quantum Spin Chains 2024 Abdessatar Souissi
Amenallah Andolsi
+ PDF Chat Many-body physics from a quantum information perspective 2012 Maciej Lewenstein
Anna Sanpera
V. Ahufinger
+ PDF Chat Generalized quantum geometric tensor for excited states using the path integral approach 2023 Sergio B. JuĂĄrez
Diego GonzĂĄlez
Daniel GutiĂ©rrez‐Ruiz
J. David Vergara
+ Generalized quantum geometric tensor for excited states using the path integral approach 2023 Sergio B. JuĂĄrez
Diego GonzĂĄlez
Daniel GutiĂ©rrez‐Ruiz
J. David Vergara
+ PDF Chat Quantum geometric tensor in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric quantum mechanics 2019 Da-Jian Zhang
Qinghai Wang
Jiangbin Gong

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors