Fast Approximate Determinants Using Rational Functions

Type: Preprint

Publication Date: 2024-05-06

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2405.03474

Abstract

We show how rational function approximations to the logarithm, such as $\log z \approx (z^2 - 1)/(z^2 + 6z + 1)$, can be turned into fast algorithms for approximating the determinant of a very large matrix. We empirically demonstrate that when combined with a good preconditioner, the third order rational function approximation offers a very good trade-off between speed and accuracy when measured on matrices coming from Mat\'ern-$5/2$ and radial basis function Gaussian process kernels. In particular, it is significantly more accurate on those matrices than the state-of-the-art stochastic Lanczos quadrature method for approximating determinants while running at about the same speed.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Low-Memory Krylov Subspace Methods for Optimal Rational Matrix Function Approximation 2023 Tyler Chen
Anne Greenbaum
Cameron Musco
Christopher Musco
+ PDF Chat A low-memory Lanczos method with rational Krylov compression for matrix functions 2024 Angelo A. Casulli
Igor Simunec
+ Low-memory Krylov subspace methods for optimal rational matrix function approximation 2022 Tyler Chen
Anne Greenbaum
Cameron Musco
Christopher Musco
+ A Posteriori Error Estimate for Computing $\mathrm{tr}(f(A))$ by Using the Lanczos Method 2018 Jie Chen
Yousef Saad
+ PDF Chat The Radau--Lanczos Method for Matrix Functions 2017 Andreas Frommer
Kathryn Lund
Marcel Schweitzer
Daniel B. Szyld
+ Scalable Log Determinants for Gaussian Process Kernel Learning 2017 Kun Dong
David Eriksson
Hannes Nickisch
David Bindel
Andrew Gordon Wilson
+ PDF Chat Gradients of Functions of Large Matrices 2024 Nicholas Krämer
Pablo Moreno-MuĂąoz
Hrittik Roy
Søren Hauberg
+ PDF Chat Krylov-Aware Stochastic Trace Estimation 2023 Tyler Chen
Eric J. Hallman
+ PDF Chat Approximating the Gaussian as a Sum of Exponentials and Its Applications to the Fast Gauss Transform 2021 Shidong Jiang Shidong Jiang
Leslie Greengard
+ Error bounds for the approximation of matrix functions with rational Krylov methods 2023 Igor Simunec
+ Fast methods for estimating the numerical rank of large matrices 2016 Shashanka Ubaru
Yousef Saad
+ Krylov-aware stochastic trace estimation 2022 Tyler Chen
Eric J. Hallman
+ PDF Chat Fast Direct Methods for Gaussian Processes 2015 Sivaram Ambikasaran
Daniel Foreman-Mackey
Leslie Greengard
David W. Hogg
Michael O’Neil
+ Gaussian quadrature for matrix inverse forms with applications 2016 Chengtao Li
Suvrit Sra
Stefanie Jegelka
+ Approximating Spectral Sums of Large-Scale Matrices using Stochastic Chebyshev Approximations 2017 In‐Su Han
Dmitry Malioutov
Haim Avron
Jinwoo Shin
+ PDF Chat A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix functions 2013 Stefan Güttel
Leonid Knizhnerman
+ The Fast Kernel Transform 2021 John Paul Ryan
Sebastian Ament
Carla P. Gomes
Anil Damle
+ Approximating the Spectral Sums of Large-scale Matrices using Chebyshev Approximations 2016 In‐Su Han
Dmitry Malioutov
Haim Avron
Jinwoo Shin
+ A comparison of limited-memory Krylov methods for Stieltjes functions of Hermitian matrices 2020 Stefan GĂźttel
Marcel Schweitzer
+ A comparison of limited-memory Krylov methods for Stieltjes functions of Hermitian matrices 2020 Stefan GĂźttel
Marcel Schweitzer

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors