Wegner estimate and upper bound on the eigenvalue condition number of non‐Hermitian random matrices

Type: Article

Publication Date: 2024-05-03

Citations: 0

DOI: https://doi.org/10.1002/cpa.22201

Abstract

Abstract We consider non‐Hermitian random matrices of the form , where is a general deterministic matrix and consists of independent entries with zero mean, unit variance, and bounded densities. For this ensemble, we prove (i) a Wegner estimate, that is, that the local density of eigenvalues is bounded by and (ii) that the expected condition number of any bulk eigenvalue is bounded by ; both results are optimal up to the factor . The latter result complements the very recent matching lower bound obtained by Cipolloni et al. and improves the ‐dependence of the upper bounds by Banks et al. and Jain et al. Our main ingredient, a near‐optimal lower tail estimate for the small singular values of , is of independent interest.

Locations

  • Communications on Pure and Applied Mathematics - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Wegner estimate and upper bound on the eigenvalue condition number of non-Hermitian random matrices 2023 László Erdős
Hong Chang Ji
+ Wegner estimate and level repulsion for Wigner random matrices 2008 László Erdős
Benjamin Schlein
Horng‐Tzer Yau
+ PDF Chat Localization and delocalization of eigenvectors for heavy-tailed random matrices 2013 Charles Bordenave
Alice Guionnet
+ PDF Chat Wegner Estimate and Level Repulsion for Wigner Random Matrices 2009 László Erdős
Benjamin Schlein
Horng‐Tzer Yau
+ PDF Chat Universality for Diagonal Eigenvector Overlaps of non-Hermitian Random Matrices 2024 Mohammed Osman
+ Eigenvector Delocalization for Non-Hermitian Random Matrices and Applications 2018 Kyle Luh
Sean O’Rourke
+ Eigenvector Delocalization for Non-Hermitian Random Matrices and Applications 2018 Kyle Luh
Sean O’Rourke
+ On the rightmost eigenvalue of non-Hermitian random matrices 2022 Giorgio Cipolloni
László Erdős
Yuanyuan Xu
Dominik Schröder
+ Concentration of the empirical spectral distribution of random matrices with dependent entries 2019 Bartłomiej Polaczyk
+ Spectral properties of non-Hermitian random matrices 2016 Nicholas A. Cook
+ Rate of convergence for non-Hermitian random matrices and their products 2020 Jonas Jalowy
+ Eigenvector Distribution of Wigner Matrices 2011 Antti Knowles
Jun Yin
+ PDF Chat Bounds on the norm of Wigner-type random matrices 2018 László Erdős
Peter Mühlbacher
+ PDF Chat Eigenvector delocalization for non‐Hermitian random matrices and applications 2020 Kyle Luh
Sean O’Rourke
+ Local laws of random matrices and their applications 2019 Fan Yang
+ PDF Chat Edge universality for non-Hermitian random matrices 2020 Giorgio Cipolloni
László Erdős
Dominik Schröder
+ Wigner matrices 2015 Gérard Ben Arous
Alice Guionnet
+ On the rightmost eigenvalue of non-Hermitian random matrices 2023 Giorgio Cipolloni
László Erdős
Dominik Schröder
Yuanyuan Xu
+ Invertibility of Sparse non-Hermitian matrices 2015 Anirban Basak
Mark Rudelson
+ Spectral properties of non-Hermitian random matrices - eScholarship 2016 Nicholas A. Cook

Works That Cite This (0)

Action Title Year Authors