Local systems and Suzuki groups

Type: Other

Publication Date: 2024-01-01

Citations: 0

DOI: https://doi.org/10.1090/conm/800/16050

Abstract

We study geometric monodromy groups <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G Subscript normal g normal e normal o normal m comma script upper F Sub Subscript q Subscript"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">g</mml:mi> <mml:mi mathvariant="normal">e</mml:mi> <mml:mi mathvariant="normal">o</mml:mi> <mml:mi mathvariant="normal">m</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">F</mml:mi> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">G_{{\mathrm {geom}},\mathcal {F}_q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the local systems <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper F Subscript q"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">F</mml:mi> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">\mathcal {F}_q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the affine line over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper F 2"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">F</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding="application/x-tex">\mathbb {F}_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of rank <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D equals StartRoot q slash 2 EndRoot left-parenthesis q minus 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>=</mml:mo> <mml:msqrt> <mml:mi>q</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mo stretchy="false">(</mml:mo> <mml:mi>q</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">D=\sqrt {q/2}(q-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q equals 2 Superscript 2 n plus 1"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mn>2</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">q=2^{2n+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, constructed in N. Katz [<italic>Exponential sums, Ree groups and Suzuki groups: conjectures</italic>, Exp. Math. <bold>28</bold> (2019), 49-56.]. The main result of the paper shows that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G Subscript normal g normal e normal o normal m comma script upper F Sub Subscript q Subscript"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">g</mml:mi> <mml:mi mathvariant="normal">e</mml:mi> <mml:mi mathvariant="normal">o</mml:mi> <mml:mi mathvariant="normal">m</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">F</mml:mi> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">G_{{\mathrm {geom}},\mathcal {F}_q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is either the Suzuki simple group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="squared upper B 2 left-parenthesis q right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mspace width="negativethinmathspace"/> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>q</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{}^2 \! B_2(q)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, or the special linear group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper S normal upper L Subscript upper D"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">S</mml:mi> <mml:mi mathvariant="normal">L</mml:mi> </mml:mrow> <mml:mi>D</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">\mathrm {SL}_D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper F 8"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">F</mml:mi> </mml:mrow> <mml:mn>8</mml:mn> </mml:msub> <mml:annotation encoding="application/x-tex">\mathcal {F}_8</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has geometric monodromy group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="squared upper B 2 left-parenthesis 8 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mspace width="negativethinmathspace"/> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mn>8</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{}^2 \!B_2(8)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and arithmetic monodromy group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper A normal u normal t left-parenthesis squared upper B 2 left-parenthesis 8 right-parenthesis right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">A</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:mi mathvariant="normal">t</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mspace width="negativethinmathspace"/> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mn>8</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {Aut}({}^2 \! B_2(8))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper F 2"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">F</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding="application/x-tex">\mathbb {F}_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, thus establishing Katz’s Conjecture 2.2 in the above cited paper in the case <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q equals 8"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>=</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">q=8</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Contemporary mathematics - American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Local systems and Suzuki groups 2023 Levent Alpöge
Nicholas M. Katz
Gabriel Navarro
E. A. O’Brien
Pham Huu Tiep
+ PDF Chat Maximal 𝑝-locals 1984 Geoffrey R. Robinson
+ PDF Chat A characterization of Suzuki’s simple groups 1992 Wu Jie Shi
+ The 𝑎-numbers of Jacobians of Suzuki curves 2013 Holley Friedlander
Derek Garton
Beth Malmskog
Rachel Pries
Colin Weir
+ Almost simple groups of Suzuki type acting on polytopes 2006 Dimitri Leemans
+ PDF Chat Duality and local group cohomology 1998 P. R. Hewitt
+ PDF Chat Presentation and central extensions of mapping class groups 1996 Sylvain Gervais
+ The local Langlands conjecture for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="normal">GSp</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>4</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> III: Stability and twisted endoscopy 2013 Ping-Shun Chan
Wee Teck Gan
+ On the global quotient structure of the space of twisted stable maps to a quotient stack 2007 Dan Abramovich
Tom Graber
Martin Olsson
Hsian-Hua Tseng
+ Fusion systems on small 𝑝-groups 2012 David Craven
Adam Glesser
+ PDF Chat On component groups of 𝐽₀(𝑁) and degeneracy maps 1998 San Ling
+ Hypergeometric sheaves for classical groups via geometric Langlands 2022 Masoud Kamgarpour
Daxin Xu
Lingfei Yi
+ Globalization of partial cohomology of groups 2020 Mikhailo Dokuchaev
Mykola Khrypchenko
Juan Jacobo Simón
+ PDF Chat Local homotopy products 1983 R. Goad
+ PDF Chat On the Kummer congruences and the stable homotopy of 𝐵U 1989 Andrew Baker
Francis Clarke
Nigel Ray
Lionel Schwartz
+ Geometric local $\varepsilon$-factors 2022 Quentin GUIGNARD
+ Products of locally connected locales 1985 I. Kříž
Aleš Pultr
+ On the Zeta function and the automorphism group of the generalized Suzuki curve 2020 Herivelto Borges
Mariana Coutinho
+ Local theory of Fuchsian systems with discrete monodromy groups 1977 正章 吉田
+ PDF Chat RIGID LOCAL SYSTEMS ON WITH FINITE MONODROMY 2018 Nicholas M. Katz
Pham Huu Tiep

Works That Cite This (0)

Action Title Year Authors