3D deep learning for enhanced atom probe tomography analysis of nanoscale microstructures

Type: Preprint

Publication Date: 2024-04-25

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2404.16524

Abstract

Quantitative analysis of microstructural features on the nanoscale, including precipitates, local chemical orderings (LCOs) or structural defects (e.g. stacking faults) plays a pivotal role in understanding the mechanical and physical responses of engineering materials. Atom probe tomography (APT), known for its exceptional combination of chemical sensitivity and sub-nanometer resolution, primarily identifies microstructures through compositional segregations. However, this fails when there is no significant segregation, as can be the case for LCOs and stacking faults. Here, we introduce a 3D deep learning approach, AtomNet, designed to process APT point cloud data at the single-atom level for nanoscale microstructure extraction, simultaneously considering compositional and structural information. AtomNet is showcased in segmenting L12-type nanoprecipitates from the matrix in an AlLiMg alloy, irrespective of crystallographic orientations, which outperforms previous methods. AtomNet also allows for 3D imaging of L10-type LCOs in an AuCu alloy, a challenging task for conventional analysis due to their small size and subtle compositional differences. Finally, we demonstrate the use of AtomNet for revealing 2D stacking faults in a Co-based superalloy, without any defected training data, expanding the capabilities of APT for automated exploration of hidden microstructures. AtomNet pushes the boundaries of APT analysis, and holds promise in establishing precise quantitative microstructure-property relationships across a diverse range of metallic materials.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ 3D deep learning for enhanced atom probe tomography analysis of nanoscale microstructures 2024 Jiwei Yu
Zhangwei Wang
A. K. SAKSENA
Shaolou Wei
Ye Wei
Timoteo Colnaghi
Andreas Marek
Markus Rampp
Min Song
Baptiste Gault
+ Revealing in-plane grain boundary composition features through machine learning from atom probe tomography data 2022 Xuyang Zhou
Ye Wei
Markus KĂźhbach
Huan Zhao
Florian Vogel
Reza Darvishi Kamachali
Gregory B. Thompson
Dierk Raabe
Baptiste Gault
+ Revealing in-plane grain boundary composition features through machine learning from atom probe tomography data 2021 Xuyang Zhou
Wei Ye
Markus KĂźhbach
Huan Zhao
Florian Vogel
Reza Darvishi Kamachali
Gregory B. Thompson
Dierk Raabe
Baptiste Gault
+ Machine learning-enabled tomographic imaging of chemical short-range atomic ordering 2023 Yue Li
Timoteo Colnaghi
Yilun Gong
Huaide Zhang
Yuan Yu
Wei Ye
Bin Gan
Min Song
Andreas Marek
Markus Rampp
+ Machine Learning‐Enabled Tomographic Imaging of Chemical Short‐Range Atomic Ordering 2024 Yue Li
Timoteo Colnaghi
Yilun Gong
Huaide Zhang
Yuan Yu
Ye Wei
Bin Gan
Min Sup Song
Andreas Marek
Markus Rampp
+ PDF Chat Convolutional neural network-assisted recognition of nanoscale L12 ordered structures in face-centred cubic alloys 2021 Yue Li
Xuyang Zhou
Timoteo Colnaghi
Ye Wei
Andreas Marek
Hongxiang Li
Stefan Bauer
Markus Rampp
Leigh T. Stephenson
+ PDF Chat Correlating grain boundary character and composition in 3-dimensions using 4D-scanning precession electron diffraction and atom probe tomography 2024 Saurabh Mohan Das
Patrick Harrison
Srikakulapu Kiranbabu
Xuyang Zhou
Wolfgang Ludwig
E.F. Rauch
Michael Herbig
Christian H. Liebscher
+ PDF Chat Using Ripley's K-function to Characterize Clustering In 3-Dimensional Point Patterns With a Case Study in Atom Probe Tomography 2020 Galen B. Vincent
Andrew P. Proudian
Jeramy D. Zimmerman
+ TopTemp: Parsing Precipitate Structure from Temper Topology 2022 Lara Kassab
Scott Howland
Henry Kvinge
Keerti Sahithi Kappagantula
Tegan Emerson
+ On Strong-Scaling and Open-Source Tools for High-Throughput Quantification of Material Point Cloud Data: Composition Gradients, Microstructural Object Reconstruction, and Spatial Correlations 2022 Markus KĂźhbach
Vitor V. Rielli
Sophie Primig
Alaukik Saxena
David Mayweg
Benjamin M. Jenkins
Stoichko Antonov
Alexander Reichmann
Stefan Kardos
Lorenz Romaner
+ Phase Segmentation in Atom-Probe Tomography Using Deep Learning-Based Edge Detection 2019 Sandeep Madireddy
Ding‐Wen Chung
Troy D. Loeffler
Subramanian K. R. S. Sankaranarayanan
David N. Seidman
Prasanna Balaprakash
Olle Heinonen
+ Phase Segmentation in Atom-Probe Tomography Using Deep Learning-Based Edge Detection 2019 Sandeep Madireddy
Ding‐Wen Chung
Troy D. Loeffler
Subramanian K. R. S. Sankaranarayanan
David N. Seidman
Prasanna Balaprakash
Olle Heinonen
+ MLography: An Automated Quantitative Metallography Model for Impurities Anomaly Detection using Novel Data Mining and Deep Learning Approach 2020 Matan Rusanovsky
Gal Oren
Sigalit Ifergane
Ofer Beeri
+ PDF Chat Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning 2021 Andreas Leitherer
Angelo Ziletti
Luca M. Ghiringhelli
+ Neighbors Map: an Efficient Atomic Descriptor for Structural Analysis 2023 Arnaud Allera
Alexandra M. Goryaeva
Paul Lafourcade
Jean‐Bernard Maillet
Mihai-Cosmin Marinica
+ Mapping Structural Heterogeneity at the Nanoscale with Scanning Nano-structure Electron Microscopy (SNEM) 2021 Yevgeny Rakita
James L. Hart
Partha Das
Daniel L. Foley
Stavros Nicolopoulos
Sina Shahrezaei
Suveen N. Mathaudhu
Mitra L. Taheri
Simon J. L. Billinge
+ Imaging individual solute atoms at crystalline imperfections in metals 2019 Shyam Katnagallu
Leigh T. Stephenson
Isabelle Mouton
Christoph Freysoldt
Aparna P. A. Subramanyam
Jan Jenke
Alvin Noe Ladines
Steffen Neumeier
Thomas Hammerschmidt
Ralf Drautz
+ Deep analytics of atomically-resolved images: manifest and latent features 2018 Maxim Ziatdinov
Ondrej Dyck
Artem Maksov
Bethany M. Hudak
Andrew R. Lupini
Jiaming Song
Paul C. Snijders
Rama K. Vasudevan
Stephen Jesse
Sergei V. Kalinin
+ Deep analytics of atomically-resolved images: manifest and latent features 2018 Maxim Ziatdinov
Ondrej Dyck
Artem Maksov
Bethany M. Hudak
Andrew R. Lupini
Jiaming Song
Paul C. Snijders
Rama K. Vasudevan
Stephen Jesse
Sergei V. Kalinin
+ Imaging individual solute atoms at crystalline imperfections in metals 2019 Shyam Katnagallu
Leigh T. Stephenson
Isabelle Mouton
Christoph Freysoldt
Aparna P. A. Subramanyam
Jan Jenke
Alvin Noe Ladines
Steffen Neumeier
Thomas Hammerschmidt
Ralf Drautz

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors