SAT actions of discrete quantum groups and minimal injective extensions of their von Neumann algebras

Type: Article

Publication Date: 2024-04-24

Citations: 0

DOI: https://doi.org/10.1090/proc/16882

Abstract

We introduce a natural generalization of the notion of strongly approximately transitive (SAT) states for actions of locally compact quantum groups. In the case of discrete quantum groups of Kac type, we show that the existence of unique stationary SAT states entails rigidity results concerning injective extensions of quantum group von Neumann algebras.

Locations

  • Proceedings of the American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ SAT actions of discrete quantum groups and minimal amenable extensions of quantum group von Neumann algebras 2021 Mehrdad Kalantar
Fatemeh Khosravi
Mohammad S. M. Moakhar
+ PDF Chat SAT actions of discrete quantum groups and minimal amenable extensions of quantum group von Neumann algebras 2021 Mehrdad Kalantar
Fatemeh Khosravi
Mohammad S. M. Moakhar
+ PDF Chat Automorphisms of compact quantum groups 2017 Kunal Mukherjee
Issan Patri
+ PDF Chat Amenable actions of compact and discrete quantum groups on von Neumann algebras 2024 K. De Commer
Jeng-Jong Ro
+ PDF Chat Weak mixing for locally compact quantum groups 2016 Ami Viselter
+ Classification and rigidity for von Neumann algebras 2012 Adrian Ioana
+ The spatial Rokhlin property for actions of compact quantum groups 2016 Selçuk Barlak
GĂĄbor SzabĂł
Christian Voigt
+ PDF Chat Model theory and Rokhlin dimension for compact quantum group actions 2019 Eusebio Gardella
Mehrdad Kalantar
Martino Lupini
+ Spectral gap actions and invariant states 2013 Han Li
Chi–Keung Ng
+ Spectral gap actions and invariant states 2013 Han Li
Chi–Keung Ng
+ Rokhlin dimension for compact quantum group actions 2017 Eusebio Gardella
Mehrdad Kalantar
Martino Lupini
+ Rokhlin dimension for compact quantum group actions 2017 Eusebio Gardella
Mehrdad Kalantar
Martino Lupini
+ Von Neumann algebras associated to ergodic actions of countable groups 1982 Judith Packer
+ PDF Chat Deformation and rigidity for group actions and von Neumann algebras 2007 Sorin Popa
+ Deformation and rigidity for group actions and von Neumann algebras 2006 Sorin Popa
+ Approximation properties for locally compact quantum groups 2016 Michael Brannan
+ PDF Chat Locally compact quantum groups, actions and extensions 2004 Stefaan Vaes
+ PDF Chat Idempotent States on Locally Compact Groups and Quantum Groups 2013 Pekka Salmi
+ Outer actions of measured quantum groupoids 2009 Michel Enock
+ Outer actions of measured quantum groupoids 2009 Michel Enock

Works That Cite This (0)

Action Title Year Authors